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Abstract

A numerical method called the Boundary Walk Method (BWM) is used to solve problems in two-dimensional

potential theory and linear elasticity in multiply connected domains. The BWM is a local method in the sense that it

directly gives the solution at the point of interest. It is based on a global integral representation of the unknown

function in the form of a potential, followed by evaluating the integrals in the resulting series solution using Monte

Carlo simulation. Appropriate integral formulations which can be used with the BWM to solve problems in potential

theory and linear elasticity in multiply-connected domains are presented. Numerical results for some sample problems

based on these formulations are also presented.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Local numerical methods solve a given boundary value problems at the point of interest directly and

generally do not need any discretization of the domain/surface, in contrast with global methods like the

Finite Element and the Boundary Element Methods. Local methods are inherently parallel and hence much

less programming effort is required to parallelize a code when compared with either the FEM or the BEM.

A main disadvantage of local methods is their rather limited applicability (at present) when compared to

the FEM or the BEM. Increasing the versatility of local methods is a matter of continuing research. It is not

clear at this stage if local methods will someday become competitive with established methods such as the
BEM and FEM. Efforts in this direction, however, are considered to be worthwhile by the present authors.

The local method described in this paper is called a Boundary Walk Method (BWM) since it simulates a

random walk on the boundary of the domain. It is based on a global integral representation of the solution
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in a form of a potential. The solution of the integral equation of the corresponding density is sought in the

form of a power series. The individual terms in the series are then evaluated using Monte Carlo integration.

This avoids any meshing and leads to an accurate implementation of the problem geometry and boundary

conditions. It also avoids the ‘curse of dimensionality’ associated with classical quadrature schemes (see
Evans and Swartz, 2000). The BWM with appropriate integral formulations was earlier applied to solve

problems in two-dimensional potential theory and elasticity in convex domains and the details can be found

in Kulkarni et al. (2003). A description of the BWM in three-dimensions for potential theory and linear

elasticity can be found in Sabelfeld (1991), Sabelfeld and Simonov (1994) but the texts deal mainly with

problems in simply-connected domains for linear elasticity. They do discuss the application of the BWM to

solve problems in multiply-connected domains in potential theory but the integral formulations are dif-

ferent than those used here. Shia and Hui (2000) have described a similar method for solving traction

prescribed problems in linear elasticity based on the direct integral formulation of Rizzo (1967), while
indirect formulations are used for both displacement and traction prescribed problems in the current work.

The main contribution of the current paper is the presentation of integral formulations for problems in

multiply-connected domains in both potential theory and linear elasticity which are appropriate for use

with the BWM. These formulations are then used in conjunction with the BWM to solve some sample

problems.

The remainder of the paper is organized as follows. Section 2 presents the theoretical background of the

BWM. Section 3 describes the solutions of Dirichlet and Neumann problems in potential theory using the

BWM. Section 4 describes the solutions of the displacement and traction prescribed problems in linear
elasticity using the BWM. Section 5 presents numerical results obtained by applying the BWM to solve

some test problems. This is followed by concluding remarks in Section 6. Finally, a proof of an observation

made during the numerical implementation of the BWM appears in Appendix A.
2. Theoretical background

This section describes the theoretical details of the Boundary Walk Method. It is divided into three parts.

The first part describes the class of problems which can be solved using the BWM and the basic procedure

followed in obtaining the required solution. The second part defines the estimators used to evaluate the

multi-dimensional integrals occurring in the solution. The third part describes the densities used in gene-

rating the random variables which are employed in constructing the estimators.

2.1. Solution of an integral equation

The Boundary Walk Method is mainly concerned with evaluating integrals of the type
Iðx0Þ ¼
Z
C
Rðx0; yÞlðyÞdSðyÞ; x0 2 D; ð1Þ
where the density lðyÞ satisfies the integral equation
lðyÞ ¼ k
Z
C
Kðy; y0Þlðy0ÞdSðy0Þ þ f ðyÞ; y 2 C � oD: ð2Þ
Here D is the domain of interest, C is the boundary of the domain and k 2 R is a parameter. The functions

Rðx; yÞ, Kðx; yÞ, lðyÞ, f ðyÞ and IðxÞ are assumed to be real valued. For the case of simplicity it will be

assumed that all the functions are continuous.

Eq. (2) is solved by assuming that lðyÞ can be represented in a uniformly convergent series of the form
(e.g. see Sobolev, 1964)
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lðyÞ ¼ l0ðyÞ þ kl1ðyÞ þ k2l2ðyÞ þ � � � : ð3Þ
Substituting Eq. (3) into Eq. (2) and equating equal powers of k, one obtains
l0ðyÞ ¼ f ðyÞ;

l1ðyÞ ¼
Z
C
Kðy; y1Þf ðy1ÞdSðy1Þ;

l2ðyÞ ¼
Z
C

Z
C
Kðy; y1ÞKðy1; y2Þf ðy2ÞdSðy2ÞdSðy1Þ;

..

.

lkðyÞ ¼
Z
C
� � �

Z
C|fflfflfflfflffl{zfflfflfflfflffl}

k times

Kðy; y1Þ � � �Kðyk�1; ykÞf ðykÞdSðykÞ � � � dSðy1Þ:

ð4Þ
(Note the iterative nature of the integrals appearing in Eq. (4).) The solution to Eq. (1) is obtained by

multiplying Eq. (3) by Rðx0; yÞ and then integrating the result over the boundary. Hence the solution to Eq.

(1) can be written as
Iðx0Þ ¼
X1
n¼0

knInðx0Þ; ð5Þ
where
Ikðx0Þ ¼
Z
C
� � �

Z
C|fflfflfflfflffl{zfflfflfflfflffl}

kþ1 times

Rðx0; y0ÞKðy0; y1ÞKðy1; y2Þ � � �Kðyk�1; ykÞf ðykÞdSðykÞ � � � dSðy1ÞdSðy0Þ; k ¼ 0; 1; . . .
2.2. Monte Carlo integration

Monte Carlo integration is used to evaluate the individual terms in Eq. (5). The Monte Carlo method

used in the present paper (see Rubinstein, 1981) efficiently exploits the iterative nature of the individual

terms and is briefly described below.

Let Y ¼ fY0;Y1; . . . ;Yn; . . .g be a C-valued Markov chain. One particular realization of the chain is

illustrated in Fig. 1. The initial state Y0 has a density p0ðY0Þ. The following states of Y are defined by the

transition density pð�jyi�1Þ, i.e., the density of the conditional random variable Yi j ðYi�1 ¼ yi�1Þ. Hence

p0ðy0ÞdSðy0Þ can be interpreted as the probability of going from the given point x0, to a neighborhood
y2

Γ

yo

y1 

xo

Fig. 1. Boundary walk method.
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dSðy0Þ of the point y0. Similarly pðyi jyi�1ÞdSðyiÞ can be interpreted as the probability of going from point

yi�1 to a neighborhood dSðyiÞ of the point yi given point yi�1. The choice of p0ðy0Þ and pðyi jyi�1Þ is subject
only to the constraints
p0ðy0Þ > 0 if Rðx0; y0Þ 6¼ 0;

pðyi jyi�1Þ > 0 if Kðyi�1; yiÞ 6¼ 0:
Note that the constraint ensures that the random variable has a finite mean. Then
E½fk� ¼ Ikðx0Þ; ð6Þ
where the random variable
fk ¼
Rðx0;Y0Þ
p0ðY0Þ

Wkf ðYkÞ ð7Þ
has density p0ðY0ÞpðY1 jY0Þ � � � pðYk jYk�1Þ and
Wk ¼ Wk�1

KðYk�1;YkÞ
pðYk jYk�1Þ

; W0 � 1:
The proof of Eq. (6) is given in Appendix A. The random variable defined in Eq. (7) is then used to

construct a direct estimator given by
ÎDk;N ¼ 1

N

XN
i¼1

fik: ð8Þ
where fik is the ith sample used to evaluate the kth term in the series given by Eq. (5).

Similar to Eq. (6), one also has
E½f�k � ¼ Ikðx0Þ; ð9Þ
where the random variable
f�k ¼ Rðx0;YkÞW �
k

f ðY0Þ
p0ðY0Þ

ð10Þ
has density p0ðY0ÞpðY1 jY0Þ � � � pðYk jYk�1Þ and
W �
k ¼ K�ðYk�1;YkÞ

pðYk jYk�1Þ
W �

k�1; W �
0 � 1:
Here K�ðy; y0Þ is the adjoint kernel corresponding to kernel in Eq. (2). Note that the proof for Eq. (9)

follows from the following relation:
Z
C
/ðyÞ

Z
C
Kðy; y0Þwðy0ÞdSðy0Þ

� �
dSðyÞ ¼

Z
C
wðyÞ

Z
C
K�ðy; y0Þ/ðy0ÞdSðy0Þ

� �
dSðyÞ:
where /ðyÞ and wðyÞ are two real valued functions defined on C. The random variable defined in Eq. (10) is

used to construct an adjoint estimator given by
ÎAk;N ¼ 1

N

XN
i¼1

f�ik ; ð11Þ
where f�
i

k is the ith sample used to evaluate the kth term in the series, given by Eq. (5).
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A few known properties of the the estimators defined above are summarized next. For details refer to

one of the many books available on Monte Carlo integration (see for e.g., Evans and Swartz, 2000). Both

the estimators will henceforth be represented by
Îk;N ¼ 1

N

XN
i¼1

X i
k; ð12Þ
where Xi’s are independent identically distributed (iid) random variables with mean l ¼ Ikðx0Þ and variance

r2.

First note that
E½Îk;N � ¼ Ikðx0Þ; for all N P 1:
Therefore Îk;N is an unbiased estimator. The variance of the estimator decreases linearly with N (assuming

r2 < 1) and is given by
Var½̂Ik;N � ¼
r2

N
:

The estimator is also a consistent estimator because
lim
N!1

Var½Îk;N � ¼ 0:
Bounds on the absolute error can be obtained by the central limit theorem according to which the estimator

Îk;N has a normal distribution asymptotically, with mean l and standard deviation r=
ffiffiffiffi
N

p
, i.e.
Îk;N � l

r=
ffiffiffiffi
N

p !D Z
as N ! 1, where Z � Normalð0; 1Þ. The variance r2 is usually estimated using
s2 ¼ 1

N � 1

XN
i¼1

X i
k

�
� Îk;N

�2
and one also has
Îk;N � l

s=
ffiffiffiffi
N

p !D Z:
Finally note that the Monte Carlo integration will converge even if the variance is infinite, provided Ikðx0Þ is
finite. This is guaranteed from the strong law of large numbers
P lim
N!1

Îk;N
�

¼ Ikðx0Þ
�
¼ 1;
which says that for a large sample size N , Îk;N will be a good approximation to Ikðx0Þ.
Two types of error estimates are used in the current work to get a bound on the error when using the

estimator given by Eq. (12). They are:

• Standard deviation of the sample mean, bst . bst is estimated by
bst ¼ s=
ffiffiffiffi
N

p
:

• Coefficient of Variation (CV). The CV is defined to be the ratio of the standard deviation and the mean

and is estimated by
CV � 1ffiffiffiffi
N

p s

Îk;N
:
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This estimate is useful only when l ¼ Ikðx0Þ 6¼ 0. The advantage of this error estimator as compared to

the standard deviation is that it is a dimensionless quantity and scale invariant.

2.3. Densities

The initial and transition densities used in the current paper in estimating the integrals are described

next.

Let x0 be any point in the plane. Let Li, i ¼ 1; . . . ;N , be N nonintersecting closed curves in the plane.

Consider the curve Lk. Let pj, j ¼ 1; . . . ;M , be M points on Lk where the term cosð/y;x0
Þ changes sign. Here

y is a point on the curve Lk and /y;x0
denotes the angle between the ray from the point x0 to the point y and

the outward normal at point y. Then the total angle subtended by the curve Lk is defined by
Xk
x0
¼

Z
Lk

j cosð/y;x0
Þj

r
dSðyÞ;

¼
XM
j¼1

Z pjþ1

pj

j cosð/y;x0
Þj

r
dSðyÞ; ðhere pMþ1 ¼ p1Þ;

¼
XM
j¼1

xk
j :
The total angle subtended by the N curves at the point x0 is defined as the sum of the total angles subtended

by the individual curves at the point x0 and is therefore given by
Xx0 ¼
XN
i¼1

Xi
x0
:

Fig. 2 illustrates the concept of the total angle subtended at a point x0 in a doubly-connected region. The

probability of going from the point x0 to a neighbourhood, dSðy0Þ, of the point y0 which is uniformly

distributed (angle measure) is then given by
pðy0 jx0ÞdSðy0Þ ¼
dx
Xx0

¼
j cosð/y0;x0

Þj
Xx0r

dSðy0Þ:
yo

n yo,xo
φ

Ω
+

xo
= 2π + 2α

dS(yo)

dω

xo

D

L1
rp

2p
1

α
D

L0 

Fig. 2. The total angle subtended at a point.
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Fig. 3. Multiply-connected domain.
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Hence,
pðy0 jx0Þ ¼
j cosð/y0;x0

Þj
Xx0r

:

The point y0 is chosen by first selecting a number which is uniformly distributed in the interval ½0;Xx0 �
and then shooting a ray from the point x0 in the appropriate direction. This direction takes into account

the total angles subtended by each closed curve Lk and the segments xk
j associated with that curve. Both the

initial and transition densities needed to calculate the individual terms in the series are obtained from the
procedure explained above since no assumption is made regarding the location of point x0.

Remark. In order to apply the Boundary Walk Method presented in this paper to numerically solve

problems arising in potential theory and linear elasticity, one must start with integral formulations which

satisfy the following requirements:

1. The integral equations should be of the form as shown in Eqs. (1) and (2) so that they can be solved using

the procedure described in Section 2.1.
2. Kernels which appear in the integral equation of the second kind need to be weakly singular so that the

densities defined in Section 2.3 can be used to evaluate the integrals. The use of such kernels along with

the mentioned densities leads to estimators with finite variance due to the cancellation of the singular-

ities. This requirement of finite variance is essential if one wants to use get bounds on the errors incurred

when using Monte Carlo integration.

A consequence of these requirements is that one must start with suitable integral formulations depending

on the type of domain and boundary conditions under consideration.
Integral formulations for solutions in the multiply-connected domain Dþ shown in Fig. 3 are presented

next. The outer boundary of Dþ is L0 while the interior boundary curves are L1; . . . ; LN , and

L ¼ L0 [ L1 [ � � � [ LN . The normal is assumed to point into the region denoted by D�.
3. Solutions of problems in potential theory using the BWM

3.1. Interior Dirichlet problem in a multiply-connected domain

The interior Dirichlet problem involves the determination of a function uðxÞ which satisfies
MuðxÞ ¼ 0; x 2 Dþ
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with
uðyÞ ¼ pðyÞ; y 2 L:
Following Mikhlin (1960), the solution of the interior Dirichlet problem in a multiply-connected domain is

sought in the following form:
uðx0Þ ¼
1

2p

Z
L

o

onðyÞ log jy� x0jlðyÞdSðyÞ þ
XN
k¼1

ak log jx0 � skj; x0 2 Dþ;

¼ 1

2p

Z
L

1

r
or

onðyÞ lðyÞdSðyÞ þ
XN
k¼1

ak log jx0 � skj; r ¼ jy� x0j;
ð13Þ
where sk is a point inside the curve Lk and ak; k ¼ 1; . . . ;N , are unknown constants. These constants have to

be obtained as a part of the solution. The density lðyÞ satisfies the integral equation
lðyÞ ¼ � 1

p

Z
L

1

r
or

onðy0Þ lðy
0ÞdSðy0Þ þ 2hðyÞ; ð14Þ
where
hðyÞ ¼ pðyÞ �
XN
k¼1

ak log jy� skj:
For future reference note that
1

r
or

onðy0Þ ¼
ðy01 � y1Þn1ðy0Þ þ ðy02 � y2Þn2ðy0Þ

jy0 � yj2
:

It can be observed that there are N independent nontrivial solutions of the homogeneous equation cor-

responding to Eq. (14) which are given by
fiðyÞ ¼ 1; y 2 Li; i ¼ 1; . . . ;N

¼ 0; y 2 Lk; i 6¼ k or y 2 L0:
ð15Þ
According to the Fredholm alternative, in order for a solution to Eq. (14) to exist, the function hðyÞmust be

orthogonal to wiðyÞ; i ¼ 1; . . . ;N , i.e.
Z
L
hðyÞwiðyÞdSðyÞ ¼ 0; i ¼ 1; . . . ;N ; ð16Þ
where wiðyÞ are nontrivial solutions of the adjoint equation corresponding to Eq. (14). Note that wiðyÞ
satisfies the equation
wiðyÞ ¼ � 1

p

Z
L

1

r
or

onðyÞw
iðy0ÞdSðy0Þ; i ¼ 1; . . . ;N :
The conditions given by Eq. (16) give rise to N equations which are then used to determine the constants ak,
k ¼ 1; . . . ;N .

Again for future reference note that
1

r
or

onðyÞ ¼
ðy1 � y 01Þn1ðyÞ þ ðy2 � y 02Þn2ðyÞ

jy0 � yj2
:

The procedure to calculate the eigenfunctions, wiðyÞ is adopted from G€unter (1967) and is described in

detail in Kulkarni (2003). The main points of the procedure are described next.
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Consider the following integral equation
/ðyÞ ¼ �k
1

p

Z
L

1

r
or

onðyÞ/ðy
0ÞdSðy0Þ þ tiðyÞ ð17Þ
with k ¼ 1. Here tiðyÞ is a function defined on the boundary and is given by
tiðyÞ ¼ dik if y 2 Lk: ð18Þ

Eq. (17) is solved by assuming that /ðyÞ can be written in the following form:
/ðyÞ ¼ q0ðyÞ þ kq1ðyÞ þ k2q2ðyÞ þ � � � : ð19Þ

Substituting Eq. (19) in Eq. (17) and equating equal powers of k one gets
q0ðyÞ ¼ tiðyÞ;

q1ðyÞ ¼ � 1

p

Z
L

1

r
or

onðyÞ q0ðy0ÞdSðy0Þ;

q2ðyÞ ¼ � 1

p

Z
L

1

r
or

onðyÞ q1ðy0ÞdSðy0Þ;

..

.

q2nþ1ðyÞ ¼ � 1

p

Z
L

1

r
or

onðyÞ q2nðy0ÞdSðy0Þ; ð20Þ

q2nþ2ðyÞ ¼ � 1

p

Z
L

1

r
or

onðyÞ q2nþ1ðy0ÞdSðy0Þ: ð21Þ
One can then show that for k ¼ 1 one has
lim
n!1

q2nðyÞ ¼ A1ðyÞ; ð22Þ

lim
n!1

q2nþ1ðyÞ ¼ A2ðyÞ: ð23Þ
and this convergence is uniform. From Eqs. (20), (21) and Eqs. (22), (23) one gets
A2ðyÞ ¼ � 1

p

Z
L

1

r
or

onðyÞA1ðy0ÞdSðy0Þ; ð24Þ

A1ðyÞ ¼ � 1

p

Z
L

1

r
or

onðyÞA2ðy0ÞdSðy0Þ: ð25Þ
Adding Eqs. (24) and (25) one gets
wiðyÞ ¼ � 1

p

Z
L

1

r
or

onðyÞw
iðy0ÞdSðy0Þ;
where
wiðyÞ ¼ A1ðyÞ þ A2ðyÞ: ð26Þ

Hence wiðyÞ is the ith eigenfunction of the homogeneous adjoint equation corresponding to Eq. (14) and

it has been constructed by choosing tiðyÞ defined in Eq. (18).

It can be shown that the N eigenfunctions which are constructed using the above procedure are inde-

pendent. These eigenfunctions are then used to determine the constants ak, k ¼ 1; . . . ;N (see Eq. (16)). Once
the constants are determined, the BWM can now be applied to obtain uðx0Þ with
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Rðx0; yÞ ¼
1

2p
1

r
or

onðyÞ ; Kðy; y0Þ ¼ � 1

p
1

r
or

onðy0Þ ; f ðyÞ ¼ 2hðyÞ and k ¼ 1:
Note that the imposition of the constraints leads to the cancellation of the pole at k ¼ 1 (see Kulkarni,

2003). The solution may still have a pole at k ¼ �1 (see G€unter, 1967). The solution is therefore modified

using pole elimination which consists of multiplying Eq. (3) by ð1þ kÞ to cancel the pole. It is then mul-
tiplied by Rðx0; y0Þ and integrated term wise. uðx0Þ is obtained by evaluating the series at k ¼ 1 and is given

by
uðx0Þ ¼
1

2
I0ðx0Þ þ

1

2

X1
n¼1

ðIn�1ðx0Þ þ Inðx0ÞÞ: ð27Þ
The individual terms in Eq. (27) are evaluated using the direct estimator given in Section 2.2 and the

densities given in Section 2.3.

The method to calculate the constants ak, k ¼ 1; . . . ;N , using the BWM is now presented. For simplicity,
a doubly-connected domain (i. e. N ¼ 1) is considered. For this case only one constant, namely a1, needs to
be calculated. From Eq. (16) it is seen that the constant a1 is given by
a1 ¼
R
L pðyÞw

1ðyÞdSðyÞR
L log jy� s1jw1ðyÞdSðyÞ

: ð28Þ
The eigenfunction w1ðyÞ is generated by defining the function t1ðyÞ as follows

t1ðyÞ ¼ 1; y 2 L1

¼ 0; y 2 L0:
ð29Þ
Now from Eqs. (22), (23) and (26) one gets
Z
L
pðyÞw1ðyÞdSðyÞ ¼

Z
L
pðyÞðA1ðyÞ þ A2ðyÞÞdSðyÞ

¼
Z
L
pðyÞ lim

n!1
q2nðyÞ

� �
dSðyÞ þ

Z
L
pðyÞ lim

n!1
q2nþ1ðyÞ

� �
dSðyÞ

¼ lim
n!1

Z
L
pðyÞq2nðyÞdSðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Integral 1

þ lim
n!1

Z
L
pðyÞq2nþ1ðyÞdSðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Integral 2

: ð30Þ
Similarly,
Z
L
log jy� s1jw1ðyÞdSðyÞ ¼ lim

n!1

Z
L
log jy� s1jq2nðyÞdSðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Integral3

þ lim
n!1

Z
L
log jy� s1jq2nþ1ðyÞdSðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Integral 4

: ð31Þ
Integral 1 and Integral 2 defined above are calculated by the BWM with
Rðx0; yÞ ¼ pðyÞ; Kðy; y0Þ ¼ � 1

p
1

r
or

onðyÞ ; f ðyÞ ¼ tðyÞ and k ¼ 1:
The even terms in the BWM simulation approximate Integral 1 while the odd terms approximate Integral 2.

Similarly, Integral 3 and Integral 4 defined above are calculated by the BWM with
Rðx0; yÞ ¼ log jy� s1j; Kðy; y0Þ ¼ � 1

p
1

r
or

onðyÞ ; f ðyÞ ¼ tðyÞ and k ¼ 1:
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The even terms in the BWM simulation approximate Integral 3 while the odd terms approximate Integral 4.

Note that Rðx0; yÞ is the only term which is different in the two sets of parameters given above. Hence the

two simulations of the BWM can be carried out simultaneously with an appropriate modification to ac-

count for different Rðx0; yÞ.
The adjoint estimator described in Section 2.2 and the initial and transition densities described in Section

2.3 are used in the Monte Carlo integration.
3.2. Interior Neumann problem in a multiply-connected domain

The interior Neumann problem involves the determination of a function uðxÞ which satisfies
MuðxÞ ¼ 0; x 2 Dþ;
with
ou
on

ðyÞ ¼ qðyÞ; y 2 L and

Z
L
qðyÞdSðyÞ ¼ 0:
The solution of the interior Neumann problem in a multiply-connected domain (see Fig. 3) is sought in the

following form (for e.g., see Mikhlin, 1960):
uðx0Þ ¼
1

2p

Z
L
log jy� x0jlðyÞdSðyÞ þ

XN
k¼1

ak log jx0 � skj; x0 2 Dþ; ð32Þ
where sk is a point inside the curve Lk and ak, k ¼ 1; . . . ;N , are constants which are given by
ak ¼ � 1

2p

Z
Lk

qðyÞdSðyÞ; k ¼ 1; . . . ;N : ð33Þ
The density lðyÞ satisfies the integral equation
lðyÞ ¼ 1

p

Z
L

1

r
or

onðyÞ lðy
0ÞdSðy0Þ � 2pðyÞ; ð34Þ
where
pðyÞ ¼ qðyÞ �
XN
k¼1

ak
o

onðyÞ log jy� skj:
The Boundary Walk Method is applied to obtain uðx0Þ with
Rðx0; yÞ ¼
1

2p
log jy� x0j; Kðy; y0Þ ¼ � 1

p
1

r
or

onðyÞ ; f ðyÞ ¼ 2pðyÞ and k ¼ �1:
The series given by Eq. (3) does not need any modification for the interior Neunmann problem and can be

directly evaluated at k ¼ �1 (see Kulkarni, 2003). uðx0Þ is therefore given by
uðx0Þ ¼
X1
n¼0

Inðx0Þð�1Þn: ð35Þ
The individual terms in Eq. (35) are evaluated using the adjoint estimator given in Section 2.2 and the

densities given in Section 2.3.
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Remark.Note that the ‘log’ terms in Eqs. (13) and (32) have an altogether different purpose. It is essential to

add them for the Dirichlet problem so as to complete the ‘range’ of the double layer potential. This is

similar to the ‘completed double layer method’ presented in Power and Miranda (1987), Kim and Karrilla

(1991) and others. For the Neumann problem it is not essential to add the ‘log’ terms. It is still possible to
find the solution to the problem using the Boundary Walk Method but then one would have to use the

method of pole elimination to remove the pole at k ¼ 1. For the solution procedure outlined above, with

the choice of ak’s given in Eq. (33), the ‘log’ terms help to remove the pole at k ¼ 1 and hence allows one to

directly evaluate the series at k ¼ �1.
4. Solutions of problems in linear elasticity using the BWM

This section presents integral formulations for interior displacement and traction prescribed problems

which are appropriate for use with the Boundary Walk Method. The procedure to use these formulations in

conjunction with the BWM is also described. The formulations are based on weakly singular kernels. The
formulation for displacement prescribed problems is given in Kulkarni (2003) and the kernel used in the

integral formulation is based on the double layer potential of the second kind as described in Kupradze

(1965). The weakly singular formulation for traction prescribed problems is given in Mikhailov (1989).

Note that the direct boundary integral formulation given by Rizzo (1967)
uiðx0Þ ¼
Z
C
Uijðx0; yÞtjðyÞdSðyÞ �

Z
C
Tijðx0; yÞujðyÞdSðyÞ; x0 2 Dþ;

uiðyÞ
2

¼
Z
C
Uijðy; y0Þtjðy0ÞdSðy0Þ �

Z
C
Tijðy; y0Þujðy0ÞdSðy0Þ; y; y0 2 C

ð36Þ
is not appropriate for the application of the BWM. Here Uðx; yÞ and Tðx; yÞ are the usual displacement and

traction kernels found in the Boundary Element Method (BEM) literature. First observe that the above
formulation coupled with BWM can handle only traction prescribed problems since the BWM is a tech-

nique to solve integral equations which are of second kind. Further, if one attempts to solve traction

prescribed problems by using Eq. (36) in conjunction the BWM, one would have to evaluate the termR
C Uijðy; y0Þtjðy0ÞdSðy0Þ for each different value of y. The number of different y’s would depend on the sample

size of the Monte Carlo integration in the BWM. One would either have to use a separate Monte Carlo

integration routine each time or would have to evaluate it each time using the procedure followed in the

usual BEM. The first choice would lead to a large increase in the computational effort while the second

choice would not only lead to an increase in computational effort but would also nullify the advantage of
the BWM of avoiding meshing altogether. Another important point to note is that the above formulation is

strongly singular (Oð1=rÞ). The difficulty in using a strongly singular formulation with the densities defined

earlier is that the estimators (see Eqs. (8) and (11)) have infinite variance. Sabelfeld (1991) has defined new

estimators to overcome this problem but it is a computationally expensive task. Another possible way is to

use different densities while preserving the earlier definition of the estimators. But then one loses the

advantage of working with densities that are very easy to sample from. To overcome the problems asso-

ciated with using a strongly singular formulation, a weakly singular formulation is used for displacement

prescribed and traction prescribed problems. Note that the kernel occurring in the displacement prescribed
problems has the form
TIIijðx; yÞ ¼ � 1

pð3� 4mÞ
1

r
or
ony

ð1
�

� 2mÞdij þ
or
oyi

or
oyj

�
; y 2 C; ð37Þ
while the weakly singular kernel occurring in the traction prescribed problems has the form
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K�
ijðx; yÞ ¼ � 1

p
1

r
or
onx

or
oyi

or
oyj

; x 2 C:
Here r ¼ jy� xj, nð�Þ denotes the outward normal, and l and m are the shear modulus and Poisson’s ratio,
respectively.

4.1. Displacement prescribed problem in a multiply-connected domain

Consider a homogeneous isotropic elastic solid with Lam�e constants k and l occupying the region Dþ

shown in Fig. 3. Under a small deformation field, the interior displacement problem in the absence of body
forces involves the determination of a function uðxÞ which satisfies
lDuðxÞ þ ðkþ lÞrðr � uðxÞÞ ¼ 0; x 2 Dþ ð38Þ

with
lim
x2Dþ
x!y2L

uðxÞ ¼ gðyÞ:
The displacement is represented in the following form (see Kulkarni, 2003)
uðx0Þ ¼ �
Z
L
TIIðx0; yÞlðyÞdSðyÞ þ

XN
k¼1

Uðx0; skÞak; x0 2 Dþ; ð39Þ
where sk is a point inside the curve Lk (see Fig. 3) and ak, k ¼ 1; . . . ;N , are constant vectors which are to be

determined during the solution procedure.

The density l satisfies the integral equation
lðyÞ ¼
Z
L
2TIIðy; y0Þlðy0ÞdSðy0Þ þ 2fðyÞ; ð40Þ
where
fðyÞ ¼ gðyÞ �
XN
k¼1

Uðy; skÞak:
It is shown in Kulkarni (2003) that there are 2N nontrivial solutions of the homogeneous equation cor-

responding to Eq. (40) and they are of the form
fiðyÞ ¼ ½ dððiþ1Þ=2Þk dðði=2ÞkÞ �T; y 2 Lk; k ¼ 0; 1; . . . ;N :
Note that where n is not an integer, dnk is defined to be 0. Therefore, according to the Fredholm alternative,

in order for a solution to Eq. (40) to exist, the function fðyÞ must be orthogonal to uiðyÞ; i ¼ 1; . . . ; 2N , i.e.
Z
L
uT

i ðyÞfðyÞdSðyÞ ¼ 0; ð41Þ
where uiðyÞ is the nonzero solution of
uiðyÞ ¼
Z
L
2T�

IIðy; y0Þuiðy0ÞdSðy0Þ: ð42Þ
Here T�
IIðy; y0Þ is the adjoint kernel corresponding to TIIðy; y0Þ. The conditions given by Eq. (41) give rise to

2N equations which are then used to determine the constant vectors, ak, k ¼ 1; . . . ;N . This situation is
similar to the one encountered when solving the interior Dirichlet problem in multiply-connected domains.

As before, one first constructs the eigenfunctions uiðyÞ, i ¼ 1; . . . ; 2N . Since the form of the eigenfunctions
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of the weakly singular kernel is similar to those of the kernel used in the Dirichlet problem, a method

similar to the one described in Section 3.1 is used to calculate the eigenfunctions of the adjoint kernel

T�
IIðy; y0Þ.
Consider the following integral equation
/ðyÞ ¼ k
Z
L
2T�

IIðy; y0Þ/ðy0ÞdSðy0Þ þ tiðyÞ ð43Þ
with k ¼ 1. Here
tiðyÞ ¼ ½ dððiþ1Þ=2Þk dðði=2ÞkÞ �T; k ¼ 0; 1; . . . ;N : ð44Þ

Note that where n is not an integer, dnk is defined to be 0. The solution to Eq. (43) is sought in form of a

series shown below
/ðyÞ ¼ q0ðyÞ þ kq1ðyÞ þ k2q2ðyÞ þ � � � ð45Þ

One can then show that
lim
n!1

q2nðyÞ ¼ Ai1ðyÞ; ð46Þ

lim
n!1

q2nþ1ðyÞ ¼ Ai2ðyÞ: ð47Þ
and that the convergence is uniform. Note that the i in the subscript denotes the fact that these functions are

generated using the function tiðyÞ. One then observes that the function uiðyÞ given by
uiðyÞ ¼ Ai1ðyÞ þ Ai2ðyÞ ð48Þ

is the ith eigenfunction of the homogeneous equation corresponding to Eq. (43) which has been constructed

by choosing the function tiðyÞ defined by Eq. (44). The eigenfunctions uiðyÞ; i ¼ 1; . . . ; 2N , are used in
conjunction with the conditions given by Eq. (41) to determine the constants ak; k ¼ 1; . . . ;N . Once the

constants are determined, the BWM can now be applied to obtain uðx0Þ with

Rðx0; yÞ ¼ �TIIðx0; yÞ; Kðy; y0Þ ¼ 2TIIðy; y0Þ; fðyÞ ¼ 2gðyÞ and k ¼ 1:
Note that the fulfilling of the conditions given by Eq. (41) leads to the cancellation of the pole at k ¼ 1. This

situation is similar to the one encountered in the Dirichlet problem. The pole at k ¼ �1 is eliminated by the
pole elimination technique. Finally, uðx0Þ is given by
uðx0Þ ¼
1

2
I0ðx0Þ þ

1

2

X1
n¼1

ðIn�1ðx0Þ þ Inðx0ÞÞ: ð49Þ
The individual terms in Eq. (49) are then estimated using the direct estimator defined in Section 2.2 and the

densities defined in Section 2.3.

The method to calculate the constants ak, k ¼ 1; . . . ;N ; using the Boundary Walk Method, is now
outlined. For simplicity a doubly-connected domain is considered. For this problem a constant a1 vector

which has two components, say a11 and a21, needs to be determined. One has to solve a system of equations

which can be written as
C11 C12

C21 C22

� �
a11
a21

� �
¼ d1

d2

� �
; ð50Þ
where
Cij ¼
Z
L
uT

i ðyÞUð:;jÞðy; s1ÞdSðyÞ ¼
Z
L
Uðj;:Þðy; s1ÞuiðyÞdSðyÞ
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and
di ¼
Z
L
uT

i ðyÞgðyÞdSðyÞ ¼
Z
L
gTðyÞuiðyÞdSðyÞ:
Observe that
½Ci1 Ci2 �T ¼
Z
L
Uðy; s1ÞuiðyÞdSðyÞ:
The eigenfunctions uiðyÞ, i ¼ 1; 2, are generated by using the function tiðyÞ defined in Eq. (44). From Eqs.

(47)–(51), one gets
½Ci1 Ci2 �T ¼
Z
L
Uðy; s1ÞuiðyÞdSðyÞ ¼

Z
L
Uðy; s1ÞðAi1ðyÞ þ Ai2ðyÞÞdSðyÞ

¼
Z
L
Uðy; s1Þ lim

n!1
q2nðyÞ

� �
dSðyÞ þ

Z
L
Uðy; s1Þ lim

n!1
q2nþ1ðyÞ

� �
dSðyÞ

¼ lim
n!1

Z
L
Uðy; s1Þq2nðyÞdSðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Integral i1

þ lim
n!1

Z
L
Uðy; s1Þq2nþ1ðyÞdSðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Integral i2

: ð51Þ
Similarly one has
di ¼
Z
L
gTðyÞuiðyÞdSðyÞ ¼ lim

n!1

Z
L
gTðyÞq2nðyÞdSðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Integrali3

þ lim
n!1

Z
L
gTðyÞq2nþ1ðyÞdSðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Integrali4

: ð52Þ
Integral i1 and Integral i2 defined above are calculated by the BWM with
Rðx0; yÞ ¼ Uðy; s1Þ; Kðy; y0Þ ¼ 2T�
IIðy; y0Þ; f ðyÞ ¼ tiðyÞ and k ¼ 1:
The even terms in the BWM simulation approximate Integral i1 while the odd terms approximate Integral

i2. Similarly, Integral i3 and Integral i4 defined above are calculated by the BWM with
Rðx0; yÞ ¼ gTðyÞ; Kðy; y0Þ ¼ 2T�
IIðy; y0Þ; f ðyÞ ¼ tiðyÞ and k ¼ 1:
The even terms in the BWM simulation approximate Integral i3 while the odd terms approximate Integral

i4. Note that two simulations of the BWM are needed to be carried out as there are two eigenfunctions
which must be generated.

4.2. Traction prescribed problem in a multiply-connected domain

Again consider a homogeneous isotropic elastic solid with Lam�e constants k and l occupying the region

Dþ shown in Fig. 3. Under a small deformation field, the interior traction problem in the absence of body

forces involves the determination of a function uðxÞ which is unique up to an additive constant (or the

corresponding unique stress field) which satisfies
lDuðxÞ þ ðkþ lÞrðr � uðxÞÞ ¼ 0; x 2 Dþ ð53Þ

with
lim
x2Dþ
x!y2L

TnðuðxÞÞ ¼ tðyÞ
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where Tnð�Þ is the traction operator. The weakly singular kernel used for the displacement problem is not

suitable for the traction prescribed problem. This is because the concept of pseudo-traction, which is used in

deriving the kernel, has no physical interpretation (see for e.g. Kupradze, 1965). Therefore, the weakly

singular formulation presented in Mikhailov (1989) is used as the starting point for the application of the
Boundary Walk Method to solve traction prescribed problems in multiply-connected two-dimensional

domains. Following Mikhailov (1989), the stress at a point x0 is written as
rilðx0Þ ¼
Z
L
Siljðx0; yÞfjðyÞdSðyÞ þ 2l

XN
k¼1

bk
oðVkÞi
ox0l

�
þ oðVkÞl

ox0i

�
þ 2l

XN
k¼1

a1k
oðU 1

k Þi
ox0l

��
þ oðU 1

k Þl
ox0i

�

þ a2k
oðU 2

k Þi
ox0l

�
þ oðU 2

k Þl
ox0i

��
þ kdil

XN
k¼1

a1k
oðU 1

k Þ1
ox01

��
þ oðU 1

k Þ2
ox02

�
þ a2k

oðU 2
k Þ1

ox01

�
þ oðU 2

k Þ2
ox02

��
;

ð54Þ
where
Siljðx0; yÞ ¼
1

p
1

r
or
oyi

or
oyl

or
oyj

; r ¼ jy� x0j;
Vkðx0Þ ¼
x01 � sk1
2lr2k

x02 � sk2
2lr2k

� �T
; rk ¼ jx0 � skj;
U1
k ¼ Uðsk; x0Þð:; 1Þ; U2

k ¼ Uðsk; x0Þð:; 2Þ
and
aik ¼
Z
Lk

tiðyÞdSðyÞ:
Here Uðsk; x0Þ is the usual displacement kernel, sk is a point inside the curve Lk, ti is the ith component of the

prescribed traction and bk, k ¼ 1; . . . ;N , are unknown constants which are to be determined during the

solution procedure. The density fiðyÞ satisfies the equation
fiðyÞ ¼ �
Z
L
2K�

ijðy; y0Þfjðy0ÞdSðy0Þ þ 2giðyÞ: ð55Þ
Here
K�
ijðy; y0Þ ¼ � 1

p
1

r
or

onðyÞ
or
oyi

or
oyj

; r ¼ jy0 � yj;
giðyÞ ¼ tiðyÞ � 2l
XN
k¼1

bk
oðVkÞi
oyl

�
þ oðVkÞl

oyi

�
nlðyÞ � 2l

XN
k¼1

a1k
oðU 1

k Þi
oyl

��
þ oðU 1

k Þl
oyi

�

þ a2k
oðU 2

k Þi
oyl

�
þ oðU 2

k Þl
oyi

��
nlðyÞ þ kdil

XN
k¼1

a1k
oðU 1

k Þ1
oy1

��
þ oðU 1

k Þ2
oy2

�
þ a2k

oðU 2
k Þ1

oy1

�
þ oðU 2

k Þ2
oy2

��
nlðyÞ:
Note that K�ðy; y0Þ is a weakly singular kernel. It can be verified (see Kim and Karrilla, 1991) that there are

N þ 3 eigenfunctions of the homogeneous equation corresponding to Eq. (55) and N of the eigenfunctions,
wiðyÞ, i ¼ 1; . . . ;N ; are given by
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wiðyÞ ¼ nðyÞ; y 2 Li

¼ 0 otherwise:
Therefore, according to the Fredholm alternative, in order for a solution to Eq. (55) to exist, the function

gðyÞ must be orthogonal to uiðyÞ, i ¼ 1; . . . ;N þ 3, i.e.
Z
L
uT

i ðyÞgðyÞdSðyÞ ¼ 0; ð56Þ
where uiðyÞ is the nonzero solution of
uiðyÞ ¼ �
Z
L
2Kðy; y0Þuiðy0ÞdSðy0Þ: ð57Þ
Here Kðy; y0Þ is the adjoint kernel corresponding to the kernel K�ðy; y0Þ. Noting that three of the N þ 3

nonzero solutions of Eq. (57) are given by
½ 1 0 �T; ½ 0 1 �T and ½ y2 �y1 �T
it is seen that three of the conditions on the function gðyÞ given by Eq. (56) are equivalent to
Z
L
g1ðyÞdSðyÞ ¼ 0;

Z
L
g2ðyÞdSðyÞ ¼ 0; and

Z
L

y2 g1ðyÞð � y1 g2ðyÞÞdSðyÞ ¼ 0:
It is observed that the function gðyÞ identically satisfies the above conditions and hence these 3 conditions
are not useful in determining the constants bk, k ¼ 1; . . . ;N . The remaining N conditions give rise to N
equations which are then used to determine the constants bk, k ¼ 1; . . . ;N . The procedure to calculate the

remaining N eigenfunctions of Eq. (57) is outlined below and it based on the method described in Section

3.1.

Consider the following integral equation:
/ðyÞ ¼ k
Z
L
2Kðy; y0Þ/ðy0ÞdSðy0Þ þ hiðyÞ ð58Þ
with k ¼ �1. Here the functions hiðyÞ, i ¼ 1; . . . ;N are defined as follows:
hiðyÞ ¼ nðyÞ; y 2 Li

¼ 0 otherwise:
ð59Þ
The solution to Eq. (58) is sought in form of a series shown below
/ðyÞ ¼ q0ðyÞ þ kq1ðyÞ þ k2q2ðyÞ þ � � � : ð60Þ
Proceeding in the manner presented in Section 3.1, one can show that
lim
n!1

q2nðyÞ ¼ Bi1ðyÞ; ð61Þ

lim
n!1

q2nþ1ðyÞ ¼ Bi2ðyÞ ð62Þ
and that the convergence is uniform. Note that the i in the subscript denotes the fact that these functions are

generated using the function hiðyÞ. One then observes that the function uiðyÞ given by
uiðyÞ ¼ Bi1ðyÞ � Bi2ðyÞ ð63Þ
is the ith eigenfunction of the equation given by Eq. (57) which has been constructed by choosing the
function hiðyÞ defined by Eq. (59). The eigenfunctions uiðyÞ, i ¼ 1; . . . ;N , are used in conjunction with the
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conditions given by Eq. (56) to determine the constants bk, k ¼ 1; . . . ;N . Once the constants are determined,

the BWM is now applied with
Rðx0; yÞ ¼ Sðx0; yÞ; Kðy; y0Þ ¼ 2K�ðy; y0Þ; fðyÞ ¼ 2tðyÞ and k ¼ �1:
Note that the components of stress are represented in a form of a vector r. Also note that the fulfilling of

the conditions given by Eq. (56) lead to the cancellation of the pole at k ¼ �1. This situation is similar to

the one encountered in the Neumann problem. The pole at k ¼ 1 is eliminated by the pole elimination

technique and rðx0Þ is then given by
rðx0Þ ¼
1

2
I0ðx0Þ þ

1

2

X1
n¼1

ðInðx0Þ � In�1ðx0ÞÞð�1Þn: ð64Þ
The individual terms in Eq. (64) are then estimated using the adjoint estimator defined in Section 2.2 and
densities defined in Section 2.3.

The constants bk, k ¼ 1; . . . ;N , can be determined using the BWM in a manner similar to the one

outlined in Section 3.1 taking into account the matrix structure of the kernels and the function hðyÞ defined
in Eq. (59).
5. Numerical results

The Boundary Walk Method is used to solve some simple illustrative problems in potential theory and

the calculated results are compared with the exact solution in each case.

Remark. There are two important issues to consider when computing the result using a series expansion in

which individual terms are calculated using Monte Carlo integration.

(a) The number of the terms in a series, n.
(b) The number of samples N , to evaluate the individual terms in the series.

The coefficient of variation (CV) is used to decide the number of terms k to be considered for the

solution. First, a fixed number of terms of the series, say n, are calculated using a fixed N . Here a large N is

used so that the CV for the first few terms is relatively small. The CV is then calculated for all the n terms.

The first k terms are chosen if the jCVj for the ðk þ 1Þth term is greater than 1.0.

Note. It is observed that for all problems defined in multiply-connected domains, the standard deviationbst , increases with successive terms and a proof explaining this observation is given in Appendix A.

5.1. Potential theory-interior Dirichlet problem

The BWM is used to solve the Dirichlet problem in an annular region bounded by two concentric circles

with r1 ¼ 0:5 and r0 ¼ 2:0 with boundary conditions uð0:5; hÞ ¼ 0:0 and uð2:0; hÞ ¼ 100:0 respectively. The

exact solution is as follows
uðr; hÞ ¼ 50:0
logðrÞ
logðr0Þ

�
þ 1

�
:

Before solving the Dirichlet problem, the constant a1 is evaluated using the procedure described in Section
3.1. The point s1 is assumed to be located at the origin. Table 1 gives the approximations for the successive

terms in the numerator and the denominator.



Table 1

Calculation of a1

Term Numerator Denominator

Mean bst CV Mean bst CV

0 0.00000 0.00000 – )2.17240 0.00332 )0.00153
1 )627.35162 1.18374 )0.00189 )6.51721 0.00996 )0.00153
2 2.28755 2.50425 1.09473 )2.15514 0.02085 )0.00967
3 )628.19138 4.99613 )0.00795 )6.53585 0.04157 )0.00636

Monte Carlo simulation parameters : N ¼ 8; 000; 000, n ¼ 4, CV¼ 1.
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It is observed from Table 1 that the standard deviation of the successive terms increases. It is also seen

that the mean of the alternate terms remains approximately constant for the terms where the CV is low.

Since the CV is lowest in magnitude for the first two terms, the constant a1, for this particular example, is

approximated as (see Eq. (28) and Eqs. (30) and (31)
Table

Solutio

r

0.3

0.6

0.9

Monte
a1 ¼
ð0:00000Þ þ ð�627:35162Þ
ð�2:17240Þ þ ð�6:51721Þ ¼ 72:19560:
As mentioned Section 3.1, the even numbered terms (including the zeroth term) in the column Numerator

approximate Integral 1 while the odd numbered terms approximate Integral 2. Similarly the even numbered

terms (including the zeroth term) in the column Denominator approximate Integral 3 while the odd num-

bered terms approximate Integral 4. Note that for this particular example, the exact value of a1 is 72.1369.
Using the value a1 calculated using the BWM, the results of the Dirichlet problem at the points
x ¼ rðr0 cosðhÞÞ;

y ¼ rðr0 sinðhÞÞ

are presented in Table 2.

It is seen from Table 2 that the computed results are quite accurate and also have a low CV.

5.2. Potential theory-interior Neumann problem

The BWM is used to solve the Neumann problem in the domain shown in Fig. 4. The following exact

solution is assumed:
uðr; hÞ ¼ r cosðhÞ þ logðrÞ:

The normal derivative corresponding to the above solution is prescribed on the boundary. Since the

solution is unique up to an additive constant, the gradient of uðr; hÞ in the x-direction is calculated here. The

results at points
x ¼ rðr0 cosðhÞÞ;
2

n uðx; yÞ of the Dirichlet problem at h ¼ p=4

k Computed value S.D. CV Exact value % Error

1 13.06027 0.03210 0.00246 13.15172 0.695

1 63.11582 0.01972 0.00031 63.15172 0.057

2 92.45437 0.07430 0.00080 92.39984 0.059

Carlo simulation parameters: N ¼ 4; 000; 000, n ¼ 5, CV¼ 1.



r1
r2

a

r0

X

Y

Fig. 4. Domain for the Neumann problem r0 ¼ 2:0, r1 ¼ 0:5, r2 ¼ 0:25, a ¼ 1:0.

Table

Solutio

r

0.3

0.6

0.9

Monte
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y ¼ rðr0 sinðhÞÞ

are presented in Table 3.

For the present problem, the point s1 is assumed to be located at the origin while the point s2 is assumed

to be located at the center of the circle with radius r2. The two constants, a1 and a2, are calculated using Eq.

(33) and are a1 ¼ �1:0 and a2 ¼ 0:0.
It is again observed from Table 3 that the computed results are quite accurate with a low CV.

5.3. Linear elasticity-displacement prescribed problem

The BWM is used to solve a plane strain displacement prescribed problem in an annular ring bounded
by two concentric circles with r1 ¼ 0:5 and r0 ¼ 2:0. The shear modulus, l, and Poisson’s ratio, m, of the
annular ring are 1.0 and 0.3, respectively. The following boundary conditions are imposed:

On the outer boundary
3

n o

Ca
uð2:0; hÞ ¼ ð3� 4mÞ logð2:0Þ � cos2ðhÞ þ cosðhÞ;

vð2:0; hÞ ¼ � sinðhÞ cosðhÞ þ sinðhÞ:

On the inner boundary
uð0:5; hÞ ¼ ð3� 4mÞ logð0:5Þ � cos2ðhÞ;
uðx;yÞ
ox of the Neumann problem at h ¼ p=4

k Computed value S.D. CV Exact value % Error

3 2.18829 0.01992 0.00910 2.17851 0.449

4 1.56908 0.03744 0.02386 1.58926 1.270

4 1.44591 0.03398 0.02350 1.39284 3.810

rlo simulation parameters: N ¼ 4; 000; 000, n ¼ 5, CV¼ 1.



Table 4

Solution

r

0.3

0.6

0.9

Monte Ca
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vð0:5; hÞ ¼ � sinðhÞ cosðhÞ:
The exact solution is as follows:
uðr; hÞ ¼ ð3� 4mÞ logðrÞ � cos2ðhÞ þ wðrÞ cosðhÞ;

vðr; hÞ ¼ � sinðhÞ cosðhÞ þ wðrÞ sinðhÞ;
where
wðrÞ ¼ 1

ðr20 � r21Þ
2r

�
� 0:5

r

�
:

Before solving the problem, the constant vector a1 is evaluated using the procedure described in Section 4.1.

The point s1 is assumed to be located at the origin. The Monte Carlo simulation parameters used in the

calculation of the constants in Eq. (50) are as follows: N ¼ 4; 000; 000, n ¼ 6 and CV¼ 1. The simulation is

run twice as explained in Section 4.1. The constants are calculated using the second and third term in the
simulation (for the numbering convention, please refer to Table 1). The constants are given by
C11 ¼ 0:69946; C12 ¼ 0:0; d1 ¼ �12:14292;

C21 ¼ 0:0; C22 ¼ 0:73033; d2 ¼ 0:0
The constant vector is therefore given by
a1 ¼ ½�17:36042 0:0 �T:
This value compares reasonably well with the value ½�17:59292 0:0�T which is given by a different method
proposed in Kulkarni (2003). This method is again based on the weakly singular kernel and is similar to the

one proposed by Mikhlin (1960) for solving interior Dirichlet problems in multiply-connected domains.

Using the value of a1 calculated using the BWM, the results for the displacement problem at the points
x ¼ rðr0 cosðhÞÞ;

y ¼ rðr0 sinðhÞÞ
are presented in Table 4.

As is seen from the Table 4, the results compare favourably with the exact results. One important point

to note is the high CV and errors for those displacement components which have a ‘small’ magnitude. In
most engineering applications, the quantity with the largest magnitude is generally of interest and therefore

it is felt the inability of the BWM to capture ‘small’ quantities well should not be considered as a severe

shortcoming of the method.
of a displacement problem at h ¼ p=4

k Computed value S.D. CV Exact value % Error

u 2 )1.32730 0.00327 0.00246 )1.35035 1.707

v 2 )0.42781 0.00359 0.00839 )0.43086 0.708

u 5 0.18746 0.04352 0.23216 0.20216 7.271

v 5 )0.12651 0.05621 0.44431 )0.12602 0.397

u 6 1.20524 0.05449 0.04521 1.18446 1.754

v 6 0.13680 0.05434 0.39722 0.12644 8.194

rlo simulation parameters: N ¼ 4; 000; 000, n ¼ 6, CV¼ 1.0.
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5.4. Linear elasticity-traction prescribed problem

The BWM is used to find stresses at different points in a square plate with a central circular hole which is

submitted to uniform unit traction in the x-direction (see Fig. 5). Note that the dimension of the plate is
large when compared with radius of the hole. The shear modulus, l, and Poisson’s ratio, m, of the plate are
1.0 and 0.3, respectively. The computed values of the stress components are compared with the analytical

solution obtained for a circular hole in an infinite plate subjected to farfield traction. This comparison is

valid for the current problems for points which are ‘close’ to the hole. The stresses at points close to the hole

and along the y-axis are then given by (see for e.g. Timoshenko and Goodier, 1970)
rxxð0; yÞ ¼
1

2
2

�
þ a2

y2
þ 3

a4

y4

�
;

ryyð0; yÞ ¼
3

2

a2

y2

�
� a4

y4

�
;

rxyð0; yÞ ¼ 0:
Before solving the problem, the constants a11, a21 and b1 need to be evaluated (see Eq. (54)). Since the

hole is traction free, a11 ¼ 0 and a21 ¼ 0. The constant b1 is evaluated using a procedure similar to the one

described in Section 3.1. The point s1 is assumed to be located at the origin. The Monte Carlo simulation

parameters used in the calculation of the constant b1 are as follows: N ¼ 4; 000; 000, n ¼ 4 and CV¼ 1. The

constant is calculated using the zeroth and first term in the simulation (for the numbering convention,
please refer to Table 1). The constant b1 is given by b1 ¼ 0:50069. Using this value of the constant, stresses

at different points along the y-axis are calculated using the BWM and results are presented in Table 5. Note

that only the rxx and ryy stresses are reported.

It is observed from Table 5 that the stress of primary practical importance, viz. rxx, is estimated rea-

sonably accurately with the BWM while a significant error is observed in one of the results for the smaller

stress component ryy . Again, it is felt that since this is of little practical importance, it should not be

considered a severe shortcoming of the BWM.
Y

X

20

a = 1

Fig. 5. Square plate with a central hole.



Table 5

Solution of the traction problem

y k Computed value S.D. CV Exact value % Error

1.5 rxx 5 1.54690 0.05353 0.03460 1.51851 1.870

ryy 4 0.45772 0.05399 0.11795 0.37037 23.585

2.0 rxx 5 1.24227 0.02414 0.01943 1.21875 1.930

ryy 4 0.28325 0.03735 0.13186 0.28125 0.711

2.5 rxx 4 1.15880 0.00798 0.00689 1.11840 3.612

ryy 3 0.20553 0.00963 0.04685 0.20160 1.949

Monte Carlo simulation parameters: N ¼ 4; 000; 000, n ¼ 6, CV¼ 1.0.
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6. Concluding remarks

The primary aim of the present paper is to present the theoretical details of a local method called the

Boundary Walk Method (BWM) and to give appropriate integral formulations for both potential theory

and linear elasticity which can be used with the BWM. Simple illustrative problems with available closed
form solutions are also solved using the BWM to show the feasibility the method for solving problem in

multiply-connected domains. To the best of the authors’ knowledge, this paper presents, for the first time,

numerical results for problems in linear elasticity in multiply-connected domains using a local method with

an appropriate integral formulation. The numerical results are in reasonable agreement with the exact

solutions. To further develop the method and to efficiently exploit some of its advantages (e.g. locality, no

meshing) the issues mentioned below need to be carefully addressed.

1. It is proved that the estimators when used with the current densities lead to random variables with the
property
lim
k!1

Var½fk� ¼ 1:
This leads to to a large sample size even to estimate the first few terms with a small variance. To

overcome this problem, the issue of selecting a proper estimator and/or different densities needs to be

investigated.

2. Integral formulations that can solve mixed boundary value problems with the the BWM need to be

developed.

3. The robustness of the method needs to be investigated along with the sensitivity of the solution to dif-
ferent constants which have to be found during the course of application of the BWM.
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Appendix A

It was mentioned in Section 5 that the standard deviation of the sample mean of the individual terms

increases with successive terms when solving problems in nonconvex or multiply-connected regions. The

following proof attempts to explain the phenomenon of increasing standard deviation. The proof is given
for the case of the interior Dirichlet problem in a multiply-connected region and the main conclusion drawn

is that the densities used (see Section 2.3) are the cause of increasing variance. Similar proofs can also be

given for the observed increasing variance when solving other problems in nonconvex and multiply-con-

nected domains using either the direct estimator or the adjoint estimator along with the densities given in

Section 2.3.

As mentioned in Section 3.1, the direct estimator given by Eq. (8) is used in the case of interior Dirichlet

problem to estimate the individual terms. The random variable given by Eq. (7) is used to define the direct

estimator. The random variable defined by Eq. (7) is rewritten below for a quick reference.
fk ¼
Rðx0;Y0Þ
p0ðY0Þ

Wkf ðYkÞ; ðA:1Þ
with
Wk ¼ Wk�1

KðYk�1;YkÞ
pðYkjYk�1Þ

; W0 � 1: ðA:2Þ
The constraints on the densities (see Section 2.2) ensure that the random variable given above has a finite
mean and in fact the definition of the random variable implies that
E½fk� ¼ Ikðx0Þ ðA:3Þ

with
Ikðx0Þ ¼
Z
C
� � �

Z
C|fflfflfflfflffl{zfflfflfflfflffl}

kþ1 times

Rðx0; y0ÞKðy0; y1Þ � � �Kðyk�1; ykÞf ðykÞdSðykÞ � � � dSðy1ÞdSðy0Þ:
The proof of Eq. (A.3) is as follows. Using Eqs. (A.2), (A.1) can be written as
fk ¼
Rðx0;Y0Þ
p0ðY0Þ

KðY0;Y1Þ
pðY1jY0Þ

� � �KðYk�1;YkÞ
pðYk jYk�1Þ

f ðYkÞ: ðA:4Þ
Therefore
E½fk� ¼
Z
C
� � �

Z
C|fflfflfflfflffl{zfflfflfflfflffl}

kþ1 times

Rðx0; y0Þ
p0ðy0Þ

Kðy0; y1Þ
pðy1 jy0Þ

� � �Kðyk�2; yk�1Þ
pðyk�1 jyk�2Þ

� Kðyk�1; ykÞ
pðyk jyk�1Þ

f ðykÞp0ðy0Þpðy1 jy0Þ � � � pðyk jyk�1ÞdSðykÞ � � � dSðy1ÞdSðy0Þ

¼
Z
C
� � �

Z
C|fflfflfflfflffl{zfflfflfflfflffl}

kþ1 times

Rðx0; y0ÞKðy0; y1Þ � � �Kðyk�1; ykÞf ðykÞdSðykÞ � � � dSðy1ÞdSðy0Þ ¼ Ikðx0Þ; ðA:5Þ
which proves Eq. (A.3).
The variance of the random variable fk is given by
Var½fk� ¼ E½f2k � � E½fk�2: ðA:6Þ
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The second term in Eq. (A.6) is the square of the integral Ikðx0Þ and is bounded. Using Eq. (A.4), the first

term in Eq. (A.6) can be written as
E½f2k � ¼
Z
C
� � �

Z
C|fflfflfflfflffl{zfflfflfflfflffl}

kþ1times

R2ðx0; y0Þ
p20ðy0Þ

K2ðy0; y1Þ
p2ðy1 jy0Þ

� � �K
2ðyk�2; yk�1Þ

p2ðyk�1 jyk�2Þ

� K2ðyk�1; ykÞ
p2ðyk jyk�1Þ

f 2ðykÞp0ðy0Þpðy1 jy0Þ � � � pðyk jyk�1ÞdSðykÞ � � � dSðy1ÞdSðy0Þ:
From the expression of the density given in Section 2.3, one gets
R2ðx0; y0Þ
p20ðy0Þ

¼
ðj cosð/y0;x0

Þj=ð2prÞÞ2

ðcosð/y0;x0
Þ=ðXx0rÞÞ

2
¼

X2
x0

ð2pÞ2
¼ cx0 ;

K2ðyk�1; ykÞ
p2ðyk jyk�1Þ

¼
ðj cosð/yk ;yk�1

Þj=ðprÞÞ2

ðcosð/yk�1;yk
Þ=ðXyk�1

rÞÞ2
¼

X2
yk�1

p2
¼ cyk�1

:

From the definition of the total solid angle it follows that for interior problems cx0 P 1 and cyk�1
P 1 where

the equality holds for only a simply-connected convex domain. Also cyk�1
P cymin P 1 where
cymin ¼
X2

ymin

p2
:

Here ymin is a point on the boundary where the total angle subtended by the boundary is the minimum. Let

cmin ¼ minðcx0 ; cyminÞ. Similarly 16 cyk�1
6 cymax where
cymax ¼
X2

ymax

p2
:

Here ymax is a point on the boundary where the total angle subtended by the boundary is the maximum.

Let cmax ¼ maxðcx0 ; cymaxÞ. Therefore it follows that for nonconvex or multiply-connected domains
cðkþ1Þ
min Ikþ1½f �ðx0Þ < E½f2k � < cðkþ1Þ

max Ikþ1½f �ðx0Þ; ðA:7Þ

where
Ikþ1½f �ðx0Þ ¼
Z
C
� � �

Z
C|fflfflfflfflffl{zfflfflfflfflffl}

kþ1 times

f 2ðykÞp0ðy0Þpðy1 jy0Þ � � � pðyk jyk�1ÞdSðykÞ � � � dSðy1ÞdSðy0Þ:
Note that for such domains, cmin > 1 and cmax > 1. It is observed from the definition of Ikþ1½f � that
Ikþ1½f �ðx0Þ ¼ Ik½f �ðx0Þ ¼ � � � ¼ I0½f �ðx0Þ ¼ E½f 2 jx0�: ðA:8Þ
Therefore it follows from Eqs. (A-7), (A-8) that the term E½f2k � increases with k for nonconvex or multiply-

connected domains. For the case of the interior Dirichlet problem, the series given by Eq. (3) is modified by

multiplying by ðkþ 1Þ to eliminate the pole at k ¼ �1. Therefore the modified series (see Section 3.1) is

uniformly convergent at k ¼ 1. Since the terms in the modified series (see Eq. (27)) tend to zero, the absolute

value of the terms in the original series (see Eq. (3)) approaches a constant i.e. jIkðx0Þj ¼ jE½fk�j approaches
a constant. Therefore the variance which is given by Eq. (A-6) increases monotonically with k for non-
convex or multiply-connected domains i.e.
Var½fkþ1� > Var½fk� k ¼ 0; 1; . . .



4024 S.S. Kulkarni et al. / International Journal of Solids and Structures 41 (2004) 3999–4024
and
lim
k!1

Var½fk� ¼ 1:
It is seen from the proof that the main reason the variance increases for nonconvex or multiply-connected

domains is because of the fact that cmin > 1. The reason cmin is always greater than 1 is due fact that the

densities are based on distributing the boundary point uniformly in the solid angle subtended by the
boundary at a point.

Remark. Note that other densities, namely those which lead to a uniform distribution over the boundary

were also tried, but the results obtained were worse than those presented because of the fact that the

densities did not cancel the weak singularity present in the kernel. The appropriate choice of a density that

would control the variance remains an open question.
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