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Abstract

A numerical method called the Boundary Walk Method (BWM) is used to solve problems in two-dimensional
potential theory and linear elasticity in multiply connected domains. The BWM is a local method in the sense that it
directly gives the solution at the point of interest. It is based on a global integral representation of the unknown
function in the form of a potential, followed by evaluating the integrals in the resulting series solution using Monte
Carlo simulation. Appropriate integral formulations which can be used with the BWM to solve problems in potential
theory and linear elasticity in multiply-connected domains are presented. Numerical results for some sample problems
based on these formulations are also presented.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Local numerical methods solve a given boundary value problems at the point of interest directly and
generally do not need any discretization of the domain/surface, in contrast with global methods like the
Finite Element and the Boundary Element Methods. Local methods are inherently parallel and hence much
less programming effort is required to parallelize a code when compared with either the FEM or the BEM.
A main disadvantage of local methods is their rather limited applicability (at present) when compared to
the FEM or the BEM. Increasing the versatility of local methods is a matter of continuing research. It is not
clear at this stage if local methods will someday become competitive with established methods such as the
BEM and FEM. Efforts in this direction, however, are considered to be worthwhile by the present authors.

The local method described in this paper is called a Boundary Walk Method (BWM) since it simulates a
random walk on the boundary of the domain. It is based on a global integral representation of the solution
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in a form of a potential. The solution of the integral equation of the corresponding density is sought in the
form of a power series. The individual terms in the series are then evaluated using Monte Carlo integration.
This avoids any meshing and leads to an accurate implementation of the problem geometry and boundary
conditions. It also avoids the ‘curse of dimensionality’ associated with classical quadrature schemes (see
Evans and Swartz, 2000). The BWM with appropriate integral formulations was earlier applied to solve
problems in two-dimensional potential theory and elasticity in convex domains and the details can be found
in Kulkarni et al. (2003). A description of the BWM in three-dimensions for potential theory and linear
elasticity can be found in Sabelfeld (1991), Sabelfeld and Simonov (1994) but the texts deal mainly with
problems in simply-connected domains for linear elasticity. They do discuss the application of the BWM to
solve problems in multiply-connected domains in potential theory but the integral formulations are dif-
ferent than those used here. Shia and Hui (2000) have described a similar method for solving traction
prescribed problems in linear elasticity based on the direct integral formulation of Rizzo (1967), while
indirect formulations are used for both displacement and traction prescribed problems in the current work.

The main contribution of the current paper is the presentation of integral formulations for problems in
multiply-connected domains in both potential theory and linear elasticity which are appropriate for use
with the BWM. These formulations are then used in conjunction with the BWM to solve some sample
problems.

The remainder of the paper is organized as follows. Section 2 presents the theoretical background of the
BWM. Section 3 describes the solutions of Dirichlet and Neumann problems in potential theory using the
BWM. Section 4 describes the solutions of the displacement and traction prescribed problems in linear
elasticity using the BWM. Section 5 presents numerical results obtained by applying the BWM to solve
some test problems. This is followed by concluding remarks in Section 6. Finally, a proof of an observation
made during the numerical implementation of the BWM appears in Appendix A.

2. Theoretical background

This section describes the theoretical details of the Boundary Walk Method. It is divided into three parts.
The first part describes the class of problems which can be solved using the BWM and the basic procedure
followed in obtaining the required solution. The second part defines the estimators used to evaluate the
multi-dimensional integrals occurring in the solution. The third part describes the densities used in gene-
rating the random variables which are employed in constructing the estimators.

2.1. Solution of an integral equation
The Boundary Walk Method is mainly concerned with evaluating integrals of the type
Ix0) = [ ROu)u)ds(y), x0€ D, (1)
r
where the density u(y) satisfies the integral equation
uy) = 7 [ KGoy)u(y)as(y) + 7). yer=op, @
r
Here D is the domain of interest, I is the boundary of the domain and 1 € R is a parameter. The functions
R(x,y), K(x,y), u(y), f(y) and I(x) are assumed to be real valued. For the case of simplicity it will be
assumed that all the functions are continuous.

Eq. (2) is solved by assuming that u(y) can be represented in a uniformly convergent series of the form
(e.g. see Sobolev, 1964)
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n(y) = mo(¥) + 2 (¥) + 2o (¥) + - 3)
Substituting Eq. (3) into Eq. (2) and equating equal powers of /, one obtains

() = / Ky, ¥/ (y1)dS(y,),
1o(y) = / / K y)K (31 ¥2)/ (92)dS(y,)dS(y,),

uk(y)Z/~--/K(y,yl)-~~K(yk71»yk>f(yk)d5(yk)~--dS(y1)-
r r

k times

(Note the iterative nature of the integrals appearing in Eq. (4).) The solution to Eq. (1) is obtained by
multiplying Eq. (3) by R(X¢,y) and then integrating the result over the boundary. Hence the solution to Eq.
(1) can be written as

o0

1(xo) = Zi"ln(Xo), (5)
where
Ii(%0) = / T / R(X0, Yo)K (Yo, YK (Y1, ¥2) - - K (Y1, Yi).f (v)dS(yy) - - - dS(y,)dS(yp), k=0,1,...
n

2.2. Monte Carlo integration

Monte Carlo integration is used to evaluate the individual terms in Eq. (5). The Monte Carlo method
used in the present paper (see Rubinstein, 1981) efficiently exploits the iterative nature of the individual
terms and is briefly described below.

Let Y=1{Y,,Yi,...,Y,,...} be a I'-'valued Markov chain. One particular realization of the chain is
illustrated in Fig. 1. The initial state Y, has a density py(Yo). The following states of Y are defined by the
transition density p(:|y,_,), i.e., the density of the conditional random variable Y;|(Y,_; =y, ;). Hence
po(yo)dS(y,) can be interpreted as the probability of going from the given point X, to a neighborhood

Fig. 1. Boundary walk method.
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dS(y,) of the point y,. Similarly p(y,|y,_,)dS(y;) can be interpreted as the probability of going from point
y,_; to a neighborhood dS(y,) of the point y, given point y,_,. The choice of py(y,) and p(y, |y, ;) is subject
only to the constraints

pO(yO) > 0 lf R(X()ay()) 7é 07
p(y:lyio) >0 if K(y, ;,y,) #0.

Note that the constraint ensures that the random variable has a finite mean. Then

E[(,] = I(xo), (6)
where the random variable
R(XO;YO)
=—" " Wf(Y 7
="y TS (V) )
has density po(Yo)p(Y1|Yo) - p(Yi|Ys1) and
K(Yio1,Yy)
Wy =W ——1D "8 =1,
3 3 lp(Yk|Yk—l) 0

The proof of Eq. (6) is given in Appendix A. The random variable defined in Eq. (7) is then used to
construct a direct estimator given by

. 1 &
II?N = N ch' (8)
i=1

where {} is the ith sample used to evaluate the kth term in the series given by Eq. (5).
Similar to Eq. (6), one also has

E[§] = I(xo), )
where the random variable
. . f(Yo)
G = R(x0, YOI, (Yo) (10)
has density po(Yo)p(Y1]Yo) - p(Yr|Ys 1) and
. K (Y1, Yi)

S L T e =,
k p(Yk|Yk71) k—1 0

Here K*(y,y’) is the adjoint kernel corresponding to kernel in Eq. (2). Note that the proof for Eq. (9)
follows from the following relation:

/ ¢<y>( / K(y,y'>w<y'>ds<y’>)ds<y> -/ w<y>( [ & y’>¢<y’>ds<y’>)ds<y>.

where ¢(y) and y(y) are two real valued functions defined on I'. The random variable defined in Eq. (10) is
used to construct an adjoint estimator given by

7 1 v *i
IQN:NZCM (11)
i=1

where C,f is the ith sample used to evaluate the kth term in the series, given by Eq. (5).
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A few known properties of the the estimators defined above are summarized next. For details refer to
one of the many books available on Monte Carlo integration (see for e.g., Evans and Swartz, 2000). Both
the estimators will henceforth be represented by

. 1,
Ik,N :N ;Xk7 (12)

where X;’s are independent identically distributed (iid) random variables with mean u = ;(X,) and variance

0.2

First note that
Ellin] = Ii(xo), forall N > 1.

Therefore fk,N is an unbiased estimator. The variance of the estimator decreases linearly with NV (assuming
62 < oo) and is given by
2
- o
Var[l;y] = v

The estimator is also a consistent estimator because
lim Var([l, 5] = 0.
N—oo

Bounds on the absolute error can be obtained by the central limit theorem according to which the estimator
Ix has a normal distribution asymptotically, with mean u and standard deviation ¢/v/N, i.e.
Ly — N
a/VN

as N — oo, where Z ~ Normal(0, 1). The variance ¢? is usually estimated using

2 1 XN:(X j 2
ST = lé_k‘N)
N—1 i=1

and one also has

bz

jk,N —H _

s/vVN
Finally note that the Monte Carlo integration will converge even if the variance is infinite, provided 7, (xXo) is
finite. This is guaranteed from the strong law of large numbers

P(A}i_xgcikw - Ik(xo)) ~1,

bz

which says that for a large sample size N, ikyN will be a good approximation to I;(xp).
Two types of error estimates are used in the current work to get a bound on the error when using the
estimator given by Eq. (12). They are:

o Standard deviation of the sample mean, s,. 5, is estimated by
5, =s/VN.

o Cocfficient of Variation (CV). The CV is defined to be the ratio of the standard deviation and the mean
and is estimated by

1

s
CVrx—ns—.
VN Ly
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This estimate is useful only when p = I;(xo) # 0. The advantage of this error estimator as compared to
the standard deviation is that it is a dimensionless quantity and scale invariant.

2.3. Densities

The initial and transition densities used in the current paper in estimating the integrals are described
next.

Let xo be any point in the plane. Let L;,, i = 1,...,N, be N nonintersecting closed curves in the plane.
Consider the curve L;. Let p;, j = 1,..., M, be M points on L; where the term cos(¢, ,,) changes sign. Here
y is a point on the curve L; and ¢, , denotes the angle between the ray from the point x, to the point y and
the outward normal at point y. Then the total angle subtended by the curve L; is defined by

o - [ lomlallysy

Pjt1
J oo llasty),  (here pusy = po).

Il
Ma

J=1
M

> ok,

=1

~.

The total angle subtended by the V curves at the point X is defined as the sum of the total angles subtended
by the individual curves at the point x, and is therefore given by

N .
Q=) Q.
i=1

Fig. 2 illustrates the concept of the total angle subtended at a point x, in a doubly-connected region. The
probability of going from the point X, to a neighbourhood, dS(y,), of the point y, which is uniformly
distributed (angle measure) is then given by

do _ [cos(¢y, )|

P(Yol%0)dS(yy) = on Qur dS(y)-

Fig. 2. The total angle subtended at a point.



S.S. Kulkarni et al. | International Journal of Solids and Structures 41 (2004) 39994024 4005

Fig. 3. Multiply-connected domain.

Hence,
| cos(¢by, x, )|

p<y0 |x0) = Q. r
X0

The point y, is chosen by first selecting a number which is uniformly distributed in the interval [0, Qy,]
and then shooting a ray from the point x, in the appropriate direction. This direction takes into account
the total angles subtended by each closed curve L; and the segments wj‘ associated with that curve. Both the
initial and transition densities needed to calculate the individual terms in the series are obtained from the
procedure explained above since no assumption is made regarding the location of point X,.

Remark. In order to apply the Boundary Walk Method presented in this paper to numerically solve
problems arising in potential theory and linear elasticity, one must start with integral formulations which
satisfy the following requirements:

1. The integral equations should be of the form as shown in Egs. (1) and (2) so that they can be solved using
the procedure described in Section 2.1.

2. Kernels which appear in the integral equation of the second kind need to be weakly singular so that the
densities defined in Section 2.3 can be used to evaluate the integrals. The use of such kernels along with
the mentioned densities leads to estimators with finite variance due to the cancellation of the singular-
ities. This requirement of finite variance is essential if one wants to use get bounds on the errors incurred
when using Monte Carlo integration.

A consequence of these requirements is that one must start with suitable integral formulations depending
on the type of domain and boundary conditions under consideration.

Integral formulations for solutions in the multiply-connected domain D" shown in Fig. 3 are presented
next. The outer boundary of D* is L, while the interior boundary curves are Li,...,Ly, and
L=LyUL;U---ULy. The normal is assumed to point into the region denoted by D~.

3. Solutions of problems in potential theory using the BWM
3.1. Interior Dirichlet problem in a multiply-connected domain

The interior Dirichlet problem involves the determination of a function u(x) which satisfies
ru(x) =0, xeD"
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with
u(y) =p(y), y€L.

Following Mikhlin (1960), the solution of the interior Dirichlet problem in a multiply-connected domain is
sought in the following form:

u(Xo) = 7 / an(y og|y Xo|p(y)dS(y) + Zak log|xo —s¢|, xo €D,
(13)
L[l o masty) +3 aloglso — s ¥ — Xo|
= [ Z — F=lv—
o LT an(y):u y Yy - a;10g |Xo ks y 0[5
where s; is a point inside the curve L, and a4,k = 1,..., N, are unknown constants. These constants have to
be obtained as a part of the solution. The density p(y) satisfies the integral equation
1 1 or ,
=—— | - ds(y') +2h 14
1Y) = =1 [ 5z M) + 2000, (14)
where

N
— Zak log|y — s
k=1

For future reference note that

T o Ol=y)my) + 05 —3)m(y)

r on(y') ly =P
It can be observed that there are N independent nontrivial solutions of the homogeneous equation cor-
responding to Eq. (14) which are given by

Ly)=1, yeL, i=1,....N
=0, ye€l, i#k or yc€lL,.

(15)

According to the Fredholm alternative, in order for a solution to Eq. (14) to exist, the function /(y) must be
orthogonal to y'(y),i=1,...,N, i.e.

/Lh(y)x//i(y)dS(y) ~0, i=1.. . N (16)

where 1/'(y) are nontrivial solutions of the adjoint equation corresponding to Eq. (14). Note that y/(y)
satisfies the equation

tﬁ"(Y)=—l/L%aj(ry)zp"(y/)dS(y’), i=1,...,N.

T

The conditions given by Eq. (16) give rise to N equations which are then used to determine the constants ay,
k=1,...,N.
Again for future reference note that

T oor 0 =y)m(y) + 02 —3)m(y)
r on(y) ly — I '

The procedure to calculate the eigenfunctions, /'(y) is adopted from Giinter (1967) and is described in
detail in Kulkarni (2003). The main points of the procedure are described next.
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Consider the following integral equation

000 =~ [ G ) + 40 (17)

Tlf
with 4 = 1. Here #(y) is a function defined on the boundary and is given by
Eq. (17) is solved by assuming that ¢(y) can be written in the following form:
G(y) = po(y) + o1 (¥) + 22pa(y) + -+ (19)
Substituting Eq. (19) in Eq. (17) and equating equal powers of A one gets
po(y) = 1(y),
1 or

) =1 [ 1 s S,

T

00 =1 [ 1 s )3,

T

1 1 or , ,
P = =1 [ 1 e SY). (20)
1 1 or , ,
a0 = =1 [ 1 e o (VS 1)
One can then show that for 2 =1 one has
lim py, (y) = A41(y), (22)
nlg?c Pai1(¥) = 4Aa(y). (23)
and this convergence is uniform. From Egs. (20), (21) and Egs. (22), (23) one gets
1 1 or , ,
) =2 [ A )as). (24
1 1 or , ,
40 =2 [ 5 g A )ds) (25)

Adding Egs. (24) and (25) one gets

V0 =1 [ 5 a0,

T

where

Y(y) = A1(y) + 4a(y). (26)

Hence /' (y) is the ith eigenfunction of the homogeneous adjoint equation corresponding to Eq. (14) and
it has been constructed by choosing #(y) defined in Eq. (18).

It can be shown that the N eigenfunctions which are constructed using the above procedure are inde-
pendent. These eigenfunctions are then used to determine the constants a;, k = 1,..., N (see Eq. (16)). Once
the constants are determined, the BWM can now be applied to obtain u(xy) with
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R , 11 or
7E;an—(y), K(Y7y)*7;;m’

Note that the imposition of the constraints leads to the cancellation of the pole at A =1 (see Kulkarni,
2003). The solution may still have a pole at A = —1 (see Giinter, 1967). The solution is therefore modified
using pole elimination which consists of multiplying Eq. (3) by (1 + 1) to cancel the pole. It is then mul-
tiplied by R(xo, y,) and integrated term wise. u(X,) is obtained by evaluating the series at A = 1 and is given
by

R(x0,y) f(y)=2h(y) and Z=1.

M(Xo) :—1() X() lzx: n 1 X() +] Xo)) (27)

2
The individual terms in Eq. (27) are evaluated using the direct estimator given in Section 2.2 and the
densities given in Section 2.3.
The method to calculate the constants a;, k = 1,..., N, using the BWM is now presented. For simplicity,
a doubly-connected domain (i. e. N = 1) is considered. For this case only one constant, namely a;, needs to
be calculated. From Eq. (16) it is seen that the constant a; is given by

_ LY (wasty) o8)
Ji logly —si |y (y)dS(y)

The eigenfunction /' (y) is generated by defining the function 7 (y) as follows
u(y)=1, yeL

= 0, y € Lo. (29)
Now from Egs. (22), (23) and (26) one gets
[ P00 )5 = [ p0)1(3) + A5())aS)
— [ ) Jim pa,))d5) + [ o) (Jim s (9))dS)
= fim | P(Y)P2(¥)AS(Y) + lim | p(¥)p241(V)dS(Y) (30)
Integral 1 Integral 2
Similarly,
[ togly — ' ()asty) = fim [ togly ~ s, ()dS(y) + tim [ dogly ~ silpa (1SG). (3D
L L L
Integral3 Integral 4

Integral 1 and Integral 2 defined above are calculated by the BWM with

ROY) =p0) K(Y) = =17 s S0 =) and 2= 1,

The even terms in the BWM simulation approximate Integral I while the odd terms approximate Integral 2.
Similarly, Integral 3 and Integral 4 defined above are calculated by the BWM with

11 or

R(xo,y) = logly —si, K(y>y’)=—;;w7 fly)=tly) and i=1.
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The even terms in the BWM simulation approximate Integral 3 while the odd terms approximate Integral 4.
Note that R(xo,y) is the only term which is different in the two sets of parameters given above. Hence the
two simulations of the BWM can be carried out simultaneously with an appropriate modification to ac-
count for different R(xo,y).

The adjoint estimator described in Section 2.2 and the initial and transition densities described in Section
2.3 are used in the Monte Carlo integration.

3.2. Interior Neumann problem in a multiply-connected domain

The interior Neumann problem involves the determination of a function u(x) which satisfies
Au(x) =0, xe€D",
with

%(Y) =4q(y), yeL and /Lq(Y)dS(Y) = 0.

The solution of the interior Neumann problem in a multiply-connected domain (see Fig. 3) is sought in the
following form (for e.g., see Mikhlin, 1960):

l N
uxa) =5 [ logly = xolu(y)ds(y) + > ailoglo —sil, x0€ D", (32)
L k=1
where s; is a point inside the curve L; and a;, k = 1,..., N, are constants which are given by
1
T Jy,

The density p(y) satisfies the integral equation

i) =1 [ 7 gt M) = 2p(3). (34)
where
p9) = aly) = D s loely s

The Boundary Walk Method is applied to obtain u(x,) with

1 , 11 or
R(Xm)’):%bgw—xo\a K(y’Y):_E;T(y)’ f(y)=2p(y) and A= -1

The series given by Eq. (3) does not need any modification for the interior Neunmann problem and can be
directly evaluated at 2 = —1 (see Kulkarni, 2003). u(x,) is therefore given by

00

u(xo) = 3 L(x0) (~1)". (35)

n=0

The individual terms in Eq. (35) are evaluated using the adjoint estimator given in Section 2.2 and the
densities given in Section 2.3.
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Remark. Note that the ‘log’ terms in Egs. (13) and (32) have an altogether different purpose. It is essential to
add them for the Dirichlet problem so as to complete the ‘range’ of the double layer potential. This is
similar to the ‘completed double layer method’ presented in Power and Miranda (1987), Kim and Karrilla
(1991) and others. For the Neumann problem it is not essential to add the ‘log’ terms. It is still possible to
find the solution to the problem using the Boundary Walk Method but then one would have to use the
method of pole elimination to remove the pole at A = 1. For the solution procedure outlined above, with
the choice of a;’s given in Eq. (33), the ‘log’ terms help to remove the pole at 4 = 1 and hence allows one to
directly evaluate the series at 2 = —1.

4. Solutions of problems in linear elasticity using the BWM

This section presents integral formulations for interior displacement and traction prescribed problems
which are appropriate for use with the Boundary Walk Method. The procedure to use these formulations in
conjunction with the BWM is also described. The formulations are based on weakly singular kernels. The
formulation for displacement prescribed problems is given in Kulkarni (2003) and the kernel used in the
integral formulation is based on the double layer potential of the second kind as described in Kupradze
(1965). The weakly singular formulation for traction prescribed problems is given in Mikhailov (1989).

Note that the direct boundary integral formulation given by Rizzo (1967)

ui(x0) = | Uy(xo,¥)t;(y)dS(y) — [ Ty(xo,¥)u;(y)dS(y), xo € DY,
[y

U0 [0 )50~ [T Y huy)aSW), vy er
is not appropriate for the application of the BWM. Here U(x,y) and T(x,y) are the usual displacement and
traction kernels found in the Boundary Element Method (BEM) literature. First observe that the above
formulation coupled with BWM can handle only traction prescribed problems since the BWM is a tech-
nique to solve integral equations which are of second kind. Further, if one attempts to solve traction
prescribed problems by using Eq. (36) in conjunction the BWM, one would have to evaluate the term
S Ui(y, ¥')t;(y')dS(y') for each different value of y. The number of different y’s would depend on the sample
size of the Monte Carlo integration in the BWM. One would either have to use a separate Monte Carlo
integration routine each time or would have to evaluate it each time using the procedure followed in the
usual BEM. The first choice would lead to a large increase in the computational effort while the second
choice would not only lead to an increase in computational effort but would also nullify the advantage of
the BWM of avoiding meshing altogether. Another important point to note is that the above formulation is
strongly singular (O(1/r)). The difficulty in using a strongly singular formulation with the densities defined
earlier is that the estimators (see Egs. (8) and (11)) have infinite variance. Sabelfeld (1991) has defined new
estimators to overcome this problem but it is a computationally expensive task. Another possible way is to
use different densities while preserving the earlier definition of the estimators. But then one loses the
advantage of working with densities that are very easy to sample from. To overcome the problems asso-
ciated with using a strongly singular formulation, a weakly singular formulation is used for displacement
prescribed and traction prescribed problems. Note that the kernel occurring in the displacement prescribed
problems has the form

1 1 or or or

1 =205, +— 2 r,
( v) j+6y,- %, y € (37)

T - ¥
(%, ¥) n(3 —4v) r Ony

while the weakly singular kernel occurring in the traction prescribed problems has the form
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; 11 or or or
Ki(x,y)=—=-7—~— xel.

Here r = |y — x|, n(-) denotes the outward normal, and u and v are the shear modulus and Poisson’s ratio,
respectively.

4.1. Displacement prescribed problem in a multiply-connected domain
Consider a homogeneous isotropic elastic solid with Lamé constants A and u occupying the region D

shown in Fig. 3. Under a small deformation field, the interior displacement problem in the absence of body
forces involves the determination of a function u(x) which satisfies

pAu(x) + (A+w)V(V-u(x)) =0, xeD* (38)
with
lir; u(x) = g(y).

The displacement is represented in the following form (see Kulkarni, 2003)

N
u(xo) = — / Tu(xo, ¥)n(y)dS(y) + ZU(XOaSk)ah Xo € D", (39)
L k=1
where s; is a point inside the curve L; (see Fig. 3) and a;, k = 1,..., N, are constant vectors which are to be

determined during the solution procedure.
The density u satisfies the integral equation

u(y) = / 2Ty, y)u(y )dS(y) + 26(y), (40)

where

f(y) = g(y) = >_U(y,s0)a.

N
k=1

It is shown in Kulkarni (2003) that there are 2N nontrivial solutions of the homogeneous equation cor-
responding to Eq. (40) and they are of the form

G(y) = [Soe Oom]’, YEL, k=0,1,...,N.

Note that where 7 is not an integer, J,; is defined to be 0. Therefore, according to the Fredholm alternative,
in order for a solution to Eq. (40) to exist, the function f(y) must be orthogonal to ¢,(y),i = 1,...,2N, i.e.

[ erast) = o (a1)
L
where ¢,(y) is the nonzero solution of
oy) = [ 2T0(5¥)0 (y)dS). @)
L

Here T} (y,y') is the adjoint kernel corresponding to Ty (y,y’). The conditions given by Eq. (41) give rise to
2N equations which are then used to determine the constant vectors, a;, k = 1,...,N. This situation is
similar to the one encountered when solving the interior Dirichlet problem in multiply-connected domains.
As before, one first constructs the eigenfunctions ¢;(y), i = 1,...,2N. Since the form of the eigenfunctions
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of the weakly singular kernel is similar to those of the kernel used in the Dirichlet problem, a method
similar to the one described in Section 3.1 is used to calculate the eigenfunctions of the adjoint kernel

Th(y. ).
Consider the following integral equation
B = [ 2Ty )0)5) + 4(y) (43)
with 4 = 1. Here
t6(y) = [ Sam]’s k=0,1,...,N. (44)

Note that where 7 is not an integer, J,; is defined to be 0. The solution to Eq. (43) is sought in form of a
series shown below

o(y) = po(y) + Ap () + Apa(y) + - (45)
One can then show that

lim p,, (y) = Au(y), (46)

nhjlgc P2n+1()’) = An(y). (47)

and that the convergence is uniform. Note that the i in the subscript denotes the fact that these functions are
generated using the function t;(y). One then observes that the function ¢,(y) given by

@;(y) = Au(y) + An(y) (48)

is the ith eigenfunction of the homogeneous equation corresponding to Eq. (43) which has been constructed
by choosing the function t;(y) defined by Eq. (44). The eigenfunctions ¢,(y),i =1,...,2N, are used in
conjunction with the conditions given by Eq. (41) to determine the constants a;,k =1,...,N. Once the
constants are determined, the BWM can now be applied to obtain u(x,) with

R(x0,¥) = —Tu(xo,y), K(y,¥)=2Tuly,y), f(y)=2g(y) and A=1
Note that the fulfilling of the conditions given by Eq. (41) leads to the cancellation of the pole at 2 = 1. This

situation is similar to the one encountered in the Dirichlet problem. The pole at A = —1 is eliminated by the
pole elimination technique. Finally, u(xo) is given by
1 1 &
u(xo) = 5Lo(x0) +5 ;(I,,_l (Xo) + L(x0)). (49)

The individual terms in Eq. (49) are then estimated using the direct estimator defined in Section 2.2 and the
densities defined in Section 2.3.

The method to calculate the constants a;, k = 1,...,N, using the Boundary Walk Method, is now
outlined. For simplicity a doubly-connected domain is considered. For this problem a constant a, vector
which has two components, say a;; and a,;, needs to be determined. One has to solve a system of equations
which can be written as

Cu Cuf|an d
= 50
|:C21 sz]{am] [a’z}7 (50)
where

q:[@@wmmmwwzlummm%wwm



S.S. Kulkarni et al. | International Journal of Solids and Structures 41 (2004) 39994024 4013

and

d; = /L ; (¥)g(y)dS(y) = /L g' (Y)o,(y)dS(y).
Observe that

(G Cal' = [ Ulyso3)ds(y).

The eigenfunctions ¢,(y), i = 1,2, are generated by using the function t;(y) defined in Eq. (44). From Eqgs.
(47)—(51), one gets

G Gt /ﬁ%&%U“ /Um&MNHAA»ﬁU
/U (v.50) (1im s, (1)) dS(y) + /Uy,s1 )(1m sy (1)) dS(y)

= lim U(y,sl)pzn( )dS(y) + lim U(y,sl)pzm( )dS(y) . (51)
Integral i1 Integral i2
Similarly one has
d; = / g' (Y)e:(y)dS(y) = lim | g"(y)p,, (y)dS(y) + lim [ g'(¥)pa, 1 (¥)dS(y) - (52)
L n—0o0 L n—oo L
Integrali3 Integrali4

Integral il and Integral i2 defined above are calculated by the BWM with
R(xo,¥) = U(y,s1), K(y,¥)=2Ty(y,y), f(y)=t(y) and Z=1

The even terms in the BWM simulation approximate Integral il while the odd terms approximate Integral
i2. Similarly, Integral i3 and Integral i4 defined above are calculated by the BWM with

R(xo,y) =g'(y), K(y,¥)=2T}(y,y), f(y)=t(y) and A=1.

The even terms in the BWM simulation approximate Integral i3 while the odd terms approximate Integral
i4. Note that two simulations of the BWM are needed to be carried out as there are two eigenfunctions
which must be generated.

4.2. Traction prescribed problem in a multiply-connected domain

Again consider a homogeneous isotropic elastic solid with Lamé constants 4 and p occupying the region
D7 shown in Fig. 3. Under a small deformation field, the interior traction problem in the absence of body
forces involves the determination of a function u(x) which is unique up to an additive constant (or the
corresponding unique stress field) which satisfies

pAu(x) + (A+ ) V(V-u(x)) =0, xeD" (53)
with
lim T (u(x) = t(y)

xeD*
X—Yy€EL



4014 S.S. Kulkarni et al. | International Journal of Solids and Structures 41 (2004) 39994024

where T"(-) is the traction operator. The weakly singular kernel used for the displacement problem is not
suitable for the traction prescribed problem. This is because the concept of pseudo-traction, which is used in
deriving the kernel, has no physical interpretation (see for e.g. Kupradze, 1965). Therefore, the weakly
singular formulation presented in Mikhailov (1989) is used as the starting point for the application of the
Boundary Walk Method to solve traction prescribed problems in multiply-connected two-dimensional
domains. Following Mikhailov (1989), the stress at a point X, is written as

(%) ( i) o(uy), o),
ou(%) /Sll, Xo, V) ()dS(y +2”Zb"{a Oxol —|—2,u; ik Oxol + Oxoi
o(Ug),  oU; N (Ukl)Z A(UR), , A(UY),
| — 2 20
+a2A{ ol + 6xol + l — k axo 6x02 +an o1 + xo2 ’
(54)
where
11 0r or or
Sij(Xo,y) = 773 o 0y ly |
i j
T
Xo1 — Skl X02 — Sk2
Vk(XO):|: 2!”,]% 2/”,]% ) f’k=|X0—Sk,

U, = U(sy, x0) (5, 1),  Uf = U(sg, X0)(5,2)

and

a = / 4(y)dS(y).

Here U(sy, Xo) is the usual displacement kernel, s; is a point inside the curve Ly, ¢ is the ith component of the
prescribed traction and by, k =1,...,N, are unknown constants which are to be determined during the
solution procedure. The density f;(y) satisfies the equation

£iy) = — / 2K (y, ), (¥)dS(y) + 28(y). (55)

K;(y,y’)z————— r=1y -yl

gi(y)=ti(y)—2uZN:bk{a(V")"+a(V)} 2MZN:<¢,M{ Ui a(Uk‘),}

k=1 ayl a)’: =1 ayl ay:
Ta |:6(U/31+6(Uk2)l:|>n( )+/1(3- . (a |:6(Ukl)l+a(Ukl)2:| +a |:6(U/\2)1+6(U/c2)2:|>n( )
2k o ;s iy il 2 1k o —ayz 2k o o i\y)-

Note that K*(y,y’) is a weakly singular kernel. It can be verified (see Kim and Karrilla, 1991) that there are
N+3 eigenfunctions of the homogeneous equation corresponding to Eq. (55) and N of the eigenfunctions,
vi(y),i=1,. , are given by
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Yi(y) =n(y), yeL
=0 otherwise.

Therefore, according to the Fredholm alternative, in order for a solution to Eq. (55) to exist, the function
g(y) must be orthogonal to ¢,(y),i=1,...,N + 3, i.e.

[dwmwwwza (56)

where ¢,(y) is the nonzero solution of
0.¥) = = [ 2K(y.)0()dS(). (57)
L

Here K(y,y’) is the adjoint kernel corresponding to the kernel K*(y,y’). Noting that three of the N + 3
nonzero solutions of Eq. (57) are given by

[1 0", [0 1]' and [ -n]'

it is seen that three of the conditions on the function g(y) given by Eq. (56) are equivalent to

Agwwwzm [mwwwzaam /m& — 1 g(¥)dS(y) = 0.

It is observed that the function g(y) identically satisfies the above conditions and hence these 3 conditions
are not useful in determining the constants b;, k = 1,...,N. The remaining N conditions give rise to N
equations which are then used to determine the constants b, k = 1,..., N. The procedure to calculate the
remaining N eigenfunctions of Eq. (57) is outlined below and it based on the method described in Section
3.1

Consider the following integral equation:

#) = [ 2K(y.¥)$)IS(Y) ) (58)
with 4 = —1. Here the functions h;(y), i = 1,...,N are defined as follows:
hi(y) =n(y), y€lL

. (59)
=0 otherwise.
The solution to Eq. (58) is sought in form of a series shown below
¢(¥) = po(y) + 201 (¥) + Zpa(y) + -+ (60)
Proceeding in the manner presented in Section 3.1, one can show that
lim p,,(y) = Ba(y), (61)
}Lno”lc P21 (Y) = Ba(y) (62)

and that the convergence is uniform. Note that the i in the subscript denotes the fact that these functions are
generated using the function h;(y). One then observes that the function ¢,(y) given by

¢,(y) = Bu(y) — Ba(y) (63)

is the ith eigenfunction of the equation given by Eq. (57) which has been constructed by choosing the
function h;(y) defined by Eq. (59). The eigenfunctions ¢,(y), i = 1,. , are used in conjunction with the
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conditions given by Eq. (56) to determine the constants b;, k = 1,..., N. Once the constants are determined,
the BWM is now applied with

R(xo,y) =S(x0,¥), K(y,¥)=2K"(y,y), f(y)=2t(y) and 7=-1.

Note that the components of stress are represented in a form of a vector 6. Also note that the fulfilling of
the conditions given by Eq. (56) lead to the cancellation of the pole at A = —1. This situation is similar to
the one encountered in the Neumann problem. The pole at A =1 is eliminated by the pole elimination
technique and a(x,) is then given by

3 (W 0) — Lot (50)) (< 1) (64)

N =

O'(Xo) = %IO(XO) —+

The individual terms in Eq. (64) are then estimated using the adjoint estimator defined in Section 2.2 and
densities defined in Section 2.3.

The constants by, k =1,...,N, can be determined using the BWM in a manner similar to the one
outlined in Section 3.1 taking into account the matrix structure of the kernels and the function h(y) defined
in Eq. (59).

5. Numerical results

The Boundary Walk Method is used to solve some simple illustrative problems in potential theory and
the calculated results are compared with the exact solution in each case.

Remark. There are two important issues to consider when computing the result using a series expansion in
which individual terms are calculated using Monte Carlo integration.

(a) The number of the terms in a series, 7.
(b) The number of samples N, to evaluate the individual terms in the series.

The coefficient of variation (CV) is used to decide the number of terms k£ to be considered for the
solution. First, a fixed number of terms of the series, say n, are calculated using a fixed N. Here a large N is
used so that the CV for the first few terms is relatively small. The CV is then calculated for all the n terms.
The first & terms are chosen if the |CV| for the (k + 1)th term is greater than 1.0.

Note. It is observed that for all problems defined in multiply-connected domains, the standard deviation
5, increases with successive terms and a proof explaining this observation is given in Appendix A.

5.1. Potential theory-interior Dirichlet problem

The BWM is used to solve the Dirichlet problem in an annular region bounded by two concentric circles
with 1 = 0.5 and ry = 2.0 with boundary conditions u(0.5,0) = 0.0 and u(2.0, 8) = 100.0 respectively. The
exact solution is as follows

u(r,0) = S0.0(llé)gg((;;)) + 1).

Before solving the Dirichlet problem, the constant a; is evaluated using the procedure described in Section
3.1. The point s, is assumed to be located at the origin. Table 1 gives the approximations for the successive
terms in the numerator and the denominator.
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Table 1

Calculation of a,
Term Numerator Denominator

Mean S CvV Mean S CV

0 0.00000 0.00000 - -2.17240 0.00332 —-0.00153
1 —627.35162 1.18374 —-0.00189 -6.51721 0.00996 —-0.00153
2 2.28755 2.50425 1.09473 -2.15514 0.02085 —0.00967
3 —628.19138 4.99613 —0.00795 —6.53585 0.04157 —-0.00636

Monte Carlo simulation parameters : N = 8,000,000, n =4, CV=1.

It is observed from Table 1 that the standard deviation of the successive terms increases. It is also seen
that the mean of the alternate terms remains approximately constant for the terms where the CV is low.
Since the CV is lowest in magnitude for the first two terms, the constant a;, for this particular example, is
approximated as (see Eq. (28) and Egs. (30) and (31)

(0.00000) + (—627.35162)

- — 72.19560.
N =3 17240) + (—6.51720) 219360

As mentioned Section 3.1, the even numbered terms (including the zeroth term) in the column Numerator
approximate Integral 1 while the odd numbered terms approximate Integral 2. Similarly the even numbered
terms (including the zeroth term) in the column Denominator approximate Integral 3 while the odd num-
bered terms approximate Integral 4. Note that for this particular example, the exact value of a; is 72.1369.
Using the value a; calculated using the BWM, the results of the Dirichlet problem at the points

x = r(rycos(0)),

y =r(rosin(0))

are presented in Table 2.
It is seen from Table 2 that the computed results are quite accurate and also have a low CV.

5.2. Potential theory-interior Neumann problem

The BWM is used to solve the Neumann problem in the domain shown in Fig. 4. The following exact
solution is assumed:

u(r,0) = rcos(0) + log(r).

The normal derivative corresponding to the above solution is prescribed on the boundary. Since the
solution is unique up to an additive constant, the gradient of u(r, ) in the x-direction is calculated here. The
results at points

x = r(rycos(0)),

Table 2

Solution u(x,y) of the Dirichlet problem at 0 = n/4
r k Computed value S.D. CV Exact value % Error
0.3 1 13.06027 0.03210 0.00246 13.15172 0.695
0.6 1 63.11582 0.01972 0.00031 63.15172 0.057
0.9 2 92.45437 0.07430 0.00080 92.39984 0.059

Monte Carlo simulation parameters: N = 4,000,000, n =5, CV=1.
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Fig. 4. Domain for the Neumann problem ry = 2.0, r; = 0.5, r, = 0.25, a = 1.0.

y = r(rosin(0))
are presented in Table 3.

For the present problem, the point s, is assumed to be located at the origin while the point s, is assumed
to be located at the center of the circle with radius »,. The two constants, a; and a», are calculated using Eq.
(33) and are a; = —1.0 and a, = 0.0.

It is again observed from Table 3 that the computed results are quite accurate with a low CV.

5.3. Linear elasticity-displacement prescribed problem

The BWM is used to solve a plane strain displacement prescribed problem in an annular ring bounded
by two concentric circles with ; = 0.5 and ry = 2.0. The shear modulus, u, and Poisson’s ratio, v, of the
annular ring are 1.0 and 0.3, respectively. The following boundary conditions are imposed:

On the outer boundary

u(2.0,0) = (3 — 4v) log(2.0) — cos*(0) + cos(0),
(2.0, 0) = —sin(0) cos(0) + sin(0).
On the inner boundary

u(0.5,0) = (3 — 4v) 1log(0.5) — cos*(0),

Table 3

Solution a”é—?) of the Neumann problem at 0 = n/4
r k Computed value S.D. Cv Exact value % Error
0.3 3 2.18829 0.01992 0.00910 2.17851 0.449
0.6 4 1.56908 0.03744 0.02386 1.58926 1.270
0.9 4 1.44591 0.03398 0.02350 1.39284 3.810

Monte Carlo simulation parameters: N = 4,000,000, » =5, CV=1.
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v(0.5,0) = —sin(0) cos(0).
The exact solution is as follows:

u(r,0) = (3 — 4v) log(r) — cos*(0) + w(r) cos(0),

o(r,0) = —sin(6) cos(0) + w(r) sin(6),

where

= (325

Before solving the problem, the constant vector a, is evaluated using the procedure described in Section 4.1.
The point s; is assumed to be located at the origin. The Monte Carlo simulation parameters used in the
calculation of the constants in Eq. (50) are as follows: N = 4,000,000, » = 6 and CV = 1. The simulation is
run twice as explained in Section 4.1. The constants are calculated using the second and third term in the
simulation (for the numbering convention, please refer to Table 1). The constants are given by

Ci = 0.69946, Cj» =0.0, dy = —12.14292,

Cy =00, C»=0.73033, d =00
The constant vector is therefore given by
a; = [—17.36042 0.0]".

This value compares reasonably well with the value [—17.59292 0.0}T which is given by a different method
proposed in Kulkarni (2003). This method is again based on the weakly singular kernel and is similar to the
one proposed by Mikhlin (1960) for solving interior Dirichlet problems in multiply-connected domains.
Using the value of a; calculated using the BWM, the results for the displacement problem at the points

x = r(rocos(6)),

vy =r(rosin(0))

are presented in Table 4.

As is seen from the Table 4, the results compare favourably with the exact results. One important point
to note is the high CV and errors for those displacement components which have a ‘small’ magnitude. In
most engineering applications, the quantity with the largest magnitude is generally of interest and therefore
it is felt the inability of the BWM to capture ‘small’ quantities well should not be considered as a severe
shortcoming of the method.

Table 4
Solution of a displacement problem at 6 = /4
r k Computed value S.D. CvV Exact value % Error
0.3 u 2 —-1.32730 0.00327 0.00246 —-1.35035 1.707
v 2 —-0.42781 0.00359 0.00839 —0.43086 0.708
0.6 u 5 0.18746 0.04352 0.23216 0.20216 7.271
v 5 —0.12651 0.05621 0.44431 —0.12602 0.397
0.9 u 6 1.20524 0.05449 0.04521 1.18446 1.754
v 6 0.13680 0.05434 0.39722 0.12644 8.194

Monte Carlo simulation parameters: N = 4,000,000, n = 6, CV = 1.0.
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5.4. Linear elasticity-traction prescribed problem

The BWM is used to find stresses at different points in a square plate with a central circular hole which is
submitted to uniform unit traction in the x-direction (see Fig. 5). Note that the dimension of the plate is
large when compared with radius of the hole. The shear modulus, p, and Poisson’s ratio, v, of the plate are
1.0 and 0.3, respectively. The computed values of the stress components are compared with the analytical
solution obtained for a circular hole in an infinite plate subjected to farfield traction. This comparison is
valid for the current problems for points which are ‘close’ to the hole. The stresses at points close to the hole
and along the y-axis are then given by (see for e.g. Timoshenko and Goodier, 1970)

1 2 4
7ul00) =5 (245 43%)

o -3(5-5),

o'xy(oyy) =0.

Before solving the problem, the constants a;;, ay; and b; need to be evaluated (see Eq. (54)). Since the
hole is traction free, a;; = 0 and a,; = 0. The constant b, is evaluated using a procedure similar to the one
described in Section 3.1. The point s; is assumed to be located at the origin. The Monte Carlo simulation
parameters used in the calculation of the constant b, are as follows: N = 4,000,000, » = 4 and CV =1. The
constant is calculated using the zeroth and first term in the simulation (for the numbering convention,
please refer to Table 1). The constant b, is given by b; = 0.50069. Using this value of the constant, stresses
at different points along the y-axis are calculated using the BWM and results are presented in Table 5. Note
that only the 6., and a,, stresses are reported.

It is observed from Table 5 that the stress of primary practical importance, viz. 6., is estimated rea-
sonably accurately with the BWM while a significant error is observed in one of the results for the smaller
stress component 6,,. Again, it is felt that since this is of little practical importance, it should not be
considered a severe shortcoming of the BWM.

20 v
[ k ]

(i 1
B ——»
B ——»
B ——»

a=1
B ——»
- d X

— \ |/ -
B ——»
B ——»
B ——»

Y

Fig. 5. Square plate with a central hole.
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Table 5
Solution of the traction problem
y k Computed value S.D. (6\% Exact value % Error
1.5 [ 5 1.54690 0.05353 0.03460 1.51851 1.870
G,y 4 0.45772 0.05399 0.11795 0.37037 23.585
2.0 [ 5 1.24227 0.02414 0.01943 1.21875 1.930
G, 4 0.28325 0.03735 0.13186 0.28125 0.711
25 [ 4 1.15880 0.00798 0.00689 1.11840 3.612
[ 3 0.20553 0.00963 0.04685 0.20160 1.949

Monte Carlo simulation parameters: N = 4,000,000, n = 6, CV=1.0.

6. Concluding remarks

The primary aim of the present paper is to present the theoretical details of a local method called the
Boundary Walk Method (BWM) and to give appropriate integral formulations for both potential theory
and linear elasticity which can be used with the BWM. Simple illustrative problems with available closed
form solutions are also solved using the BWM to show the feasibility the method for solving problem in
multiply-connected domains. To the best of the authors’ knowledge, this paper presents, for the first time,
numerical results for problems in linear elasticity in multiply-connected domains using a local method with
an appropriate integral formulation. The numerical results are in reasonable agreement with the exact
solutions. To further develop the method and to efficiently exploit some of its advantages (e.g. locality, no
meshing) the issues mentioned below need to be carefully addressed.

1. It is proved that the estimators when used with the current densities lead to random variables with the
property

A!im Var[{;] = 0.

This leads to to a large sample size even to estimate the first few terms with a small variance. To
overcome this problem, the issue of selecting a proper estimator and/or different densities needs to be
investigated.

2. Integral formulations that can solve mixed boundary value problems with the the BWM need to be
developed.

3. The robustness of the method needs to be investigated along with the sensitivity of the solution to dif-
ferent constants which have to be found during the course of application of the BWM.
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Appendix A

It was mentioned in Section 5 that the standard deviation of the sample mean of the individual terms
increases with successive terms when solving problems in nonconvex or multiply-connected regions. The
following proof attempts to explain the phenomenon of increasing standard deviation. The proof is given
for the case of the interior Dirichlet problem in a multiply-connected region and the main conclusion drawn
is that the densities used (see Section 2.3) are the cause of increasing variance. Similar proofs can also be
given for the observed increasing variance when solving other problems in nonconvex and multiply-con-
nected domains using either the direct estimator or the adjoint estimator along with the densities given in
Section 2.3.

As mentioned in Section 3.1, the direct estimator given by Eq. (8) is used in the case of interior Dirichlet
problem to estimate the individual terms. The random variable given by Eq. (7) is used to define the direct
estimator. The random variable defined by Eq. (7) is rewritten below for a quick reference.

_ R(XOa YO)
G = T (), (A1)
with
(Yi1,Ys) _
W, Wi_4 7P(Yk|Yk71) , W=1. (A.Z)

The constraints on the densities (see Section 2.2) ensure that the random variable given above has a finite
mean and in fact the definition of the random variable implies that

E[]) = I(x0) (A.3)
with

Ii(x0) = / - / R0, Yo)K (0, ¥1) -+ K (Y12 ) S (5)AS () -~ dS(¥,)dS (3o)-

k+1 times

The proof of Eq. (A.3) is as follows. Using Egs. (A.2), (A.1) can be written as

R(X(),Y()) K(YO,YI) K(kahYk)f(Yk). (A4)

) p(YViYe) (Vi Yeo)

Therefore

Elt] = / / (x0,¥0) K(¥o,¥1)  K(¥x2,¥i 1)

Po(Yo) Py |YO) P(kal 1¥i2)

x %f(yk)po(yo) (311%0) P3| e 1)AS(y,) - dS(y,)dS (o)
/ / (%0, Yo K (Yo, ¥1) -+ K (e 1, ¥/ (5)dS(y,) -~ dS(v,)dS (vo) = Ii(x0), (A5)

IlmCS

which proves Eq. (A.3).
The variance of the random variable {; is given by

Var[(,] = E[C/%] - E[Ck]2~ (A.6)



S.S. Kulkarni et al. | International Journal of Solids and Structures 41 (2004) 39994024 4023

The second term in Eq. (A.6) is the square of the integral /,(X,) and is bounded. Using Eq. (A.4), the first
term in Eq. (A.6) can be written as

2] / / Xm)’o yanl) ”KZ(Yk—zy}’k—l)
(4]

Po Y() YI |YO) Pz(kal |Yk72)
k+111mes
K=(yi_1,y
x ﬁf%yk)po(yo)p(yl 1¥0) -+ P¥e ¥ )AS(y,) - dS(y,)dS (3o).
k k

From the expression of the density given in Section 2.3, one gets

R*(x0,¥,) _ ([cos(¢ o)1/ (27))° Qio B
5 (Yo) (cos(dy, )/ (@ur))  (2m)

X0

Ky nv) _ (loos(byy /() 2,
PPYelyin) (COS(‘byH,yk)/(ka,IV))z 2 Vi1

From the definition of the total solid angle it follows that for interior problems ¢y, > 1 and ¢,, , > 1 where
the equality holds for only a simply-connected convex domain. Also ¢y, , = cymin => 1 Where

Cymin =

Here ymin is a point on the boundary where the total angle subtended by the boundary is the minimum. Let
Cmin = MiN(Cx,, Cymin). Similarly 1< ¢y, | < cymax Where
2

ymax

72

Cymax =

Here ymax is a point on the boundary where the total angle subtended by the boundary is the maximum.
Let ¢max = max(cy,, Cymax)- Therefore it follows that for nonconvex or multiply-connected domains

iV Ilf1(x0) < EG) < &V Ilf1(x0), (A7)
where
L [f](x0) =/r---/rfz(yk)po(yo)p(ylIyo)~--p(ykkafl)dS(yk)~--dS(y1)dS(yo)-

Note that for such domains, ¢y, > 1 and ¢ > 1. It is observed from the definition of 7;,[f] that

L [f1(x0) = Llf](%0) = -+ = D[/](x0) = E[f?[X]. (A.8)

Therefore it follows from Egs. (A-7), (A-8) that the term £ [C,f] increases with &k for nonconvex or multiply-
connected domains. For the case of the interior Dirichlet problem, the series given by Eq. (3) is modified by
multiplying by (4 + 1) to eliminate the pole at A = —1. Therefore the modified series (see Section 3.1) is
uniformly convergent at 4 = 1. Since the terms in the modified series (see Eq. (27)) tend to zero, the absolute
value of the terms in the original series (see Eq. (3)) approaches a constant i.e. |I,(xo)| = |E[{:]| approaches
a constant. Therefore the variance which is given by Eq. (A-6) increases monotonically with & for non-
convex or multiply-connected domains i.e.

Var[{;] > Var[(,] k=0,1,...
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and

klim‘ Var[{;] = oc.

It is seen from the proof that the main reason the variance increases for nonconvex or multiply-connected
domains is because of the fact that ¢, > 1. The reason cp;, is always greater than 1 is due fact that the
densities are based on distributing the boundary point uniformly in the solid angle subtended by the
boundary at a point.

Remark. Note that other densities, namely those which lead to a uniform distribution over the boundary
were also tried, but the results obtained were worse than those presented because of the fact that the
densities did not cancel the weak singularity present in the kernel. The appropriate choice of a density that
would control the variance remains an open question.
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